225 MHz to 520 MHz , Digitally Tunable, Band-Pass Filter

GENERAL DESCRIPTION

FEATURES

- Digitally tunable, octave, band-pass tuning
- 3 dB bandwidth: $9 \% \pm 2 \%$
- Rejection (20 dB): 19\% away from feENTER
- Single chip replacement for discrete filter banks
- Compact $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ LGA package

APPLICATIONS

- Land mobile radios
- Test and measurement equipment
- Military radars and electronic warfare and electronic countermeasures
- Satellite communications
- Industrial and medical equipment

The ADMV8505 ${ }^{1}$ is an RF band-pass filter that features a digitally selectable frequency of operation. The filter center frequency (fcenter) can be adjusted from 225 MHz to 520 MHz using an 8 -bit value (256 states) that incorporates a patented calibration technique.
The typical 3 dB bandwidth is 9%, and adjustability is $\pm 2 \%$. Inser-
The typical 3 dB bandwidth is 9%, and adjustability is $\pm 2 \%$. Inser-
tion loss is typically 4.5 dB , and the 20 dB rejection is 19% away from the $\mathrm{f}_{\text {CENTER, }}$ which is ideally suited for minimizing system interferers.
The ADMV8505 tunable filter can be used as a smaller alternative
to large switched filter banks and discrete component-based tuna-
ble filters, providing a dynamically adjustable solution in advanced
communications applications.
The ADMV8505 tunable filter can be used as a smaller alternative
to large switched filter banks and discrete component-based tuna-
ble filters, providing a dynamically adjustable solution in advanced
communications applications.
The ADMV8505 tunable filter can be used as a smaller alternative
to large switched filter banks and discrete component-based tuna-
ble filters, providing a dynamically adjustable solution in advanced
communications applications.
The ADMV8505 tunable filter can be used as a smaller alternative
to large switched filter banks and discrete component-based tuna-
ble filters, providing a dynamically adjustable solution in advanced
communications applications.
intorfororc-ich

FUNCTIONAL BLOCK DIAGRAM

1 Protected by U.S. Patent Number 11201600B1.
Rev. A

TABLE OF CONTENTS

Features 1
Applications 1
General Description. 1
Functional Block Diagram 1
Specifications 3
Timing Specifications 4
Absolute Maximum Ratings 5
Electrostatic Discharge (ESD) Ratings 5
ESD Caution. 5
Pin Configuration and Function Descriptions. 6
Typical Performance Characteristics 7
Theory of Operation 10
Chip Architecture 10
RF Connections 10
SPI Configuration 10
Mode Selection 11
SPI Write Mode 11
SPI Streaming. 11
Interpolation Functions 11
Interpolation Equations. 12
Interpolation Tables 12
Interpolation Plots. 13
Interpolation Coefficient Calibration 13
Filter Code Read Back 14
SPI Fast Latch Mode 14
Chip Reset. 14
Applications Information 15
Interpolation Coefficients 15
Printed Circuit Board (PCB) Design Guidelines 15
Flow Charts. 16
Register Summary. 18
Register Details. 22
Outline Dimensions 31
Ordering Guide. 31
Evaluation Boards 31
REVISION HISTORY
4/2024-Rev. 0 to Rev. A
Change to Table 3 5
12/2023—Revision 0: Initial Version

SPECIFICATIONS

$T_{A}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1. Specifications

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
FREQUENCY RANGE (f ${ }_{\text {center }}$)	225		520	MHz	
BANDWIDTH (3 dB)		9		\%	
BANDWIDTH ADJUSTABILITY		± 2		\%	
RESOLUTION		1		\%	8 bits per filter
$\begin{aligned} & \hline \text { REJECTION (20 dB) } \\ & \text { Low-Side } \\ & \text { High-Side } \end{aligned}$		$\begin{aligned} & 0.84 \times \mathrm{f}_{\text {CENTER }} \\ & 1.19 \times \mathrm{f}_{\text {CENTER }} \end{aligned}$		$\begin{array}{\|l\|l\|} \mathrm{GHz} \\ \mathrm{GHz} \end{array}$	
RE-ENTRY FREQUENCY		>3		GHz	$\leq 30 \mathrm{~dB}$
INSERTION LOSS		4.5		dB	
RETURN LOSS		20		dB	
DYNAMIC PERFORMANCE Input Compression (P0.1dB) Input Third-Order Intercept (IP3) Low-Side IP3 High-Side IP3 In-Band IP3 Group Delay Amplitude Settling Time Phase Settling Time Drift Rate Amplitude Frequency		24 53 48 47 19 5 10 -0.01 -45		dBm dBm dBm dBm ns нs $\mu \mathrm{S}$ $\mathrm{dB} /{ }^{\circ} \mathrm{C}$ ppm $/{ }^{\circ} \mathrm{C}$	Input power $\left(\mathrm{P}_{\mathbb{N}}\right)$ is 10 dBm ; f_{1} is Input Frequency 1 and f_{2} is Input Frequency 2 $\begin{aligned} & \mathrm{f}_{1}=0.9 \times \mathrm{f}_{\text {CENTER }}, \mathrm{f}_{2}=0.95 \times \mathrm{f}_{\text {CENTER }} \\ & \mathrm{f}_{1}=1.05 \times \mathrm{f}_{\text {CENTER }}, \mathrm{f}_{2}=1.1 \times \mathrm{f}_{\text {CENTER }} \\ & \mathrm{f}_{1}=\mathrm{f}_{\text {CENTER }}-5 \mathrm{kHz}, \mathrm{f}_{2}=\mathrm{f}_{\text {CENTER }}+5 \mathrm{kHz} \end{aligned}$ Measured at $\mathrm{f}_{\text {CENTER }}=225 \mathrm{MHz}$ To within $\leq 1 \mathrm{~dB}$ of static insertion loss To within $\leq 2^{\circ}$ of static phase At $\mathrm{f}_{\text {CENTER }}=365 \mathrm{MHz}$
SUPPLY VOLTAGE VSS VDD		$\begin{aligned} & -2.5 \\ & +3.3 \end{aligned}$	$\begin{gathered} -2.4 \\ +3.4 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	
SUPPLY CURRENT (STATIC) Static VSS Current ($I_{\text {SS }}$) VDD Current ((lod Dynamic $I_{D D}$		$\begin{aligned} & -2 \\ & 125 \\ & \mathrm{f}_{\text {SCLK }} / 4 \end{aligned}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA	Where $\mathrm{f}_{\text {SCLK }}$ is the SCLK toggle frequency in MHz For example, continuous serial peripheral interface (SPI) writing at 10 MHz yields 2.5 mA of dynamic supply current
```LOGIC (\overline{RST}, \overline{CS}, SCLK, SDI, SDO, and SFL) Logic Low Logic High```		$\begin{aligned} & 0 \\ & +3.3 \end{aligned}$		$\left\lvert\, \begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}\right.$	

## SPECIFICATIONS

## TIMING SPECIFICATIONS

Table 2. Timing Specifications

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
$\mathrm{t}_{1}$	10			ns	$\overline{\text { RST }}$ low time to perform reset
	10			ns	SCLK cycle time (write)
$\mathrm{t}_{2}$	20			ns	SCLK cycle time (read)
$t_{3}$	2.5			ns	SCLK high time
$t_{4}$	2.5			ns	SCLK low time
$\mathrm{t}_{5}$	5			ns	$\overline{\mathrm{CS}}$ falling edge to SCLK rising edge setup time
$\mathrm{t}_{6}$	2			ns	SCLK rising edge to hold time
$\mathrm{t}_{7}$	5			ns	Minimum $\overline{\text { CS }}$ high time for latching in data (for multiple SPI transactions)
$\mathrm{t}_{8}$	5			ns	$\overline{\mathrm{CS}}$ rising edge to next SCLK rising edge ignore
$\mathrm{tg}_{9}$	5			ns	SDI data setup time
$t_{10}$	2			ns	SDI data hold time
$t_{11}$	10			ns	SFL falling edge (exiting SFL mode) to $\overline{\mathrm{CS}}$ falling edge time (start of SPI transaction)
$t_{12}$	10			ns	$\overline{\mathrm{CS}}$ rising edge (end of SPI transaction) to SFL rising edge time (entering SFL mode)
$t_{13}$	10			ns	SFL rising edge to $\overline{C S}$ falling edge time
$t_{14}$	10			ns	$\overline{\mathrm{CS}}$ cycle time (SFL mode)
$t_{15}$	2.5			ns	$\overline{\text { CS }}$ high time (SFL mode)
$\mathrm{t}_{16}$	2.5			ns	$\overline{\mathrm{CS}}$ low time (SFL mode)
$\mathrm{t}_{17}$		6		ns	SCLK falling edge to SDO valid (load capacitance ( $\left.\mathrm{C}_{\mathrm{L}}\right)=10 \mathrm{pF}$ )
$\mathrm{t}_{18}$		5		ns	SDO rise and fall time ( $C_{L}=10 \mathrm{pF}$ )
$\mathrm{t}_{19}$		4		ns	$\overline{\mathrm{CS}}$ rising edge to SDO tristate ( $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ )

## Timing Diagram



Figure 2. Timing Diagram

## ABSOLUTE MAXIMUM RATINGS

Table 3. Absolute Maximum Ratings

Parameter	Rating
Supply	
$\quad$ VDD	-0.3 V to +3.6 V
VSS	-2.75 V to +0.3 V
Digital Control Inputs	-0.3 V to $\mathrm{VDD}+0.3 \mathrm{~V}$
Voltage	2 mA
Current	P 0.1 dB
Continuous RF Input Power	Maximum 5 minutes over
Survivability	lifetime
Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Range	$135^{\circ} \mathrm{C}$
Junction to Maintain 1 Million Hours Mean Time	
to Failure (MTTF)	$90^{\circ} \mathrm{C}$
Nominal Junction (Paddle Temperature	MSL 3
(TPADDLE) $=85^{\circ} \mathrm{C}$ )	
Moisture Sensitivity Level (MSL) Rating	

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

## ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

Human body model (HBM) per ANSI/ESDA/JEDEC JS-001-2010.
Field induced charged device model (FICDM) per ANSI/ESDAJJEDEC JS-002.

ESD Ratings for ADMV8505
Table 4. ADMV8505, 40-Terminal LGA

ESD Model	Withstand Threshold (V)	Class
HBM	1000	1 C
FICDM	500	C2a

## ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devi-   ces and circuit boards can discharge without detection. Although   this product features patented or proprietary protection circuitry,   damage may occur on devices subjected to high energy ESD.   Therefore, proper ESD precautions should be taken to avoid   performance degradation or loss of functionality.

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



Figure 3. Pin Configuration

## Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
$\begin{aligned} & 1,3,5 \text { to } 27,29,31, \\ & 37,39 \end{aligned}$	GND	Ground. Connect the GND pins to the RF and DC ground.
2	VSS	The -2.5 V Power Supply Pin. Place $0.1 \mu \mathrm{~F}$ and 100 pF decoupling capacitors close to VSS.
4	RF1	RF Pin 1. RF1 is DC-coupled and matched to $50 \Omega$. Do not apply an external voltage to RF1.
28	RF2	RF Pin 2. RF2 is DC-coupled and matched to $50 \Omega$. Do not apply an external voltage to RF2.
30	VDD	The 3.3 V Power Supply Pin. Place $0.1 \mu \mathrm{~F}$ and 100 pF decoupling capacitors close to VDD.
32	BYP	The 2.5 V LDO Decoupling Bypass Pin. Place $47 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}$, and 100 pF decoupling capacitors close to BYP.
33	SFL	SPI Fast Latch Enable, 3.3 V Logic. Set SFL high to enable fast latching of filter states on each rising edge of $\overline{\mathrm{CS}}$. While SFL is in this mode, the SCLK, SDO, and SDI pins are not active. The SFL pin is internally pulled low with a $260 \mathrm{k} \Omega$ resistor.
34	SCLK	SPI Clock, 3.3 V Logic. The SCLK pin is internally pulled low with a $260 \mathrm{k} \Omega$ resistor.
35	SDO	SPI Data Output, 3.3 V Logic. The SDO pin is internally pulled low with a $260 \mathrm{k} \Omega$ resistor.
36	SDI	SPI Data Input, 3.3 V Logic. The SDI pin is internally pulled low with a $260 \mathrm{k} \Omega$ resistor.
38	$\overline{C S}$	SPI Chip Select, 3.3 V Logic. Active low. The $\overline{\mathrm{CS}}$ pin is internally pulled low with a $260 \mathrm{k} \Omega$ resistor.
40	$\overline{\text { RST }}$	Chip Reset, 3.3 V Logic. Active low. The $\overline{\mathrm{RST}}$ pin is internally pulled high with a $260 \mathrm{k} \Omega$ resistor
E1 to E16	EPAD	Exposed Pad. The exposed pad must be connected to the RF and DC ground.



Figure 4. Insertion Loss vs. RF Frequency for Nominal Bandwidth


Figure 5. Insertion Loss and Return Loss vs. RF Frequency for Nominal Bandwidth at 225 MHz


Figure 6. Insertion Loss and Group Delay vs. RF Frequency at 225 MHz


Figure 7. Insertion Loss vs. RF Frequency for Nominal Bandwidth at Various Temperatures and Center Frequencies


Figure 8. Insertion Loss and Return Loss vs. RF Frequency for Nominal Bandwidth at 520 MHz


Figure 9. Insertion Loss and Group Delay vs. RF Frequency at 520 MHz

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 10. Percentage Away from $f_{\text {CENTER }}$ for Lower 20 dB Rejection vs. RF Frequency for Various Bandwidths


Figure 11. Input P0.1dB vs. RF Frequency for Various Bandwidths


Figure 12. Low-Side Input IP3 vs. RF Frequency for Nominal Bandwidth and Various Temperatures (See the Specifications Section for Further Information)


Figure 13. Percentage Away from $f_{\text {CENTER }}$ for Upper 20 dB Rejection vs. RF Frequency for Various Bandwidths


Figure 14. Input P0.1dB vs. RF Frequency for Nominal Bandwidth and Various Temperatures


Figure 15. High-Side Input IP3 vs. RF Frequency for Nominal Bandwidth and Various Temperatures (See the Specifications Section for Further Information)

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 16. In-Band Input IP3 vs. RF Frequency for Nominal Bandwidth and Various Temperatures (See the Specifications Section for Further Information)


Figure 17. Insertion Loss vs. RF Frequency at Various Bandwidths and Center Frequencies


Figure 18. Center Frequency and Step Size vs. FC_LOAD_WR

## THEORY OF OPERATION

## CHIP ARCHITECTURE

The ADMV8505 contains several switched capacitors that allow the RF performance to vary. A simplified diagram of the filter architecture is shown in Figure 19.


Figure 19. Simplified Filter Architecture Diagram
The two center frequency capacitors ( $\mathrm{C}_{\mathrm{FC}}$ ) are configured by the $\mathrm{f}_{\text {CENTER }}$ load value, which manipulates the $\mathrm{f}_{\text {CENTER }}$ of the filter. Likewise, the bandwidth capacito ( $\mathrm{C}_{\mathrm{B}}$ ) is configured by the bandwidth load value, which adjusts the bandwidth response of the filter. Additionally, the two match capacitors ( $\mathrm{C}_{\text {MATCH }}$ ) are set by the match load value, which allows adjustments to impedance matching of the filter.

The $\mathrm{f}_{\text {CENTER, }}$, bandwidth, and match load values each have 256 states ( 8 bits). In theory, there are over 16 million possible states for $\mathrm{f}_{\text {CENTER }}$, bandwidth, and match load values for each band within the ADMV8505. To simplify selection of these values, Analog Devices, Inc., has developed three patent pending interpolation functions to ease implementation.

## RF CONNECTIONS

The RF1 and RF2 pins of the ADMV8505 are DC-coupled to on-chip ESD protection diodes. If a DC voltage is present on the RF1 and RF2 pins from other components within the system, it is recommended to place DC blocking capacitors in series with these pins. The DC blocking capacitors must be selected based on the operating frequency of the filter. Generally, a value greater than 10 nF is sufficient to minimize insertion loss at the lower frequencies of operation. At higher frequencies of operation, it may be necessary to consider the parasitic elements of the selected capacitor. Figure 20 shows a general model of a capacitor with the parasitic elements. The parasitic series inductance ( $L_{\text {ESL }}$ ) is typically of most concern given that its impedance can become dominant. The other parasitic elements, including the leakage resistance $\left(R_{\mathrm{L}}\right)$, the dielectric absorption resistance ( $\mathrm{R}_{\mathrm{DA}}$ ), the dielectric absorption capacitance ( $\mathrm{C}_{\mathrm{DA}}$ ), and electrical series resistance ( $\mathrm{R}_{\mathrm{ESR}}$ ) are less critical elements for consideration but are shown in Figure 20 for completeness.


Figure 20. Model of a Capacitor

## SPI CONFIGURATION

The SPI of the ADMV8505 allows configuration of the device for specific functions or operations via the 5 -pin SPI port. This interface provides users with added flexibility and customization. The SPI consists of five control lines: SFL, SCLK, SDI, SDO, and $\overline{\mathrm{CS}}$. For normal SPI operations, keep the SFL pin low.
The SPI protocol consists of an R/W bit followed by 15 register address bits and 8 data bits. The address field and data field are organized MSB first and end with the LSB.

Set the MSB to 0 for a write operation, and set the MSB to 1 for a read operation. The write cycle must be sampled on the rising edge of SCLK. The 24 bits of the serial write address and data are shifted in on the SDI control line, MSB to LSB. The ADMV8505 input logic level for the write cycle supports a 3.3 V interface.

For a read cycle, the RW bit and the 15 register address bits shift in on the rising edge of SCLK on the SDI control line. Then, 8 bits of serial read data shift out on the SDO control line, MSB first, on the falling edge of the SCLK. The output logic level for a read cycle is 3.3 V . The output drivers of the SDO are enabled after the last rising edge of the SCLK of the instruction cycle and remain active until the end of the read cycle. In a read operation, when the $\overline{\mathrm{CS}}$ is deasserted, the SDO returns to high impedance until the next read transaction. The $\overline{\mathrm{CS}}$ is active low and must be deasserted at the end of the write or read sequence.

An active low input on the $\overline{\mathrm{CS}}$ starts and gates a communication cycle. The $\overline{C S}$ pin allows more than one device to be used on the same serial communications lines. The SDO pin goes to a high impedance state when the $\overline{\mathrm{CS}}$ input is high. During the communication cycle, the chip select must stay low. The SPI communications protocol follows the Analog Devices SPI standard. For more information, see the ADI-SPI Serial Control Interface Standard (Rev 1.0).

## THEORY OF OPERATION

## MODE SELECTION

The ADMV8505 has two modes of operation: SPI write and SPI fast latch. The SPI write mode is the normal operating mode, and the SPI fast latch mode is used to sequence through the on-chip lookup table (LUT) using the internal state machine. To select the SPI write mode, set the SFL pin low. For operation in SPI fast latch mode, program the on-chip lookup table and fast latch parameters with the SFL pin low. Then, bring the SFL pin high to enter the SPI fast latch mode. Figure 21 shows a simplified representation of the SPI with the register map and internal state machine.


Figure 21. Simplified SPI Diagram

## SPI WRITE MODE

The SPI write mode has a write grouping (WR) in Register 0x020 through Register 0x022. The grouping consists of the following:

- $f_{\text {CENTER }}$ load value
- Bandwidth load value
- Match load value

See the Register Details section more information regarding the write grouping.

## SPI STREAMING

In general, there are two types of SPI streaming transactions, Endian register ascending order and descending order. The ADMV8505 supports only the ascending order. To enable SPI streaming with Endian register ascending order, program Register $0 \times 000$ to value $0 \times 3 \mathrm{C}$.

For SPI streaming to the write grouping, Register $0 \times 020$ to Register 0x022 (recommended), the transaction points to Register $0 \times 020$ and streams out 3 bytes of data. The transaction is 40 bits in total (RW bit +15 bits address +24 bits data).
For SPI streaming to the lookup table, Register $0 \times 100$ to Register 0x15F (recommended), the transaction points to Register $0 \times 100$ and streams out 96 bytes of data. The transaction is 784 bits in total (RW bit +15 bits address +768 bits data).

## INTERPOLATION FUNCTIONS

The ADMV8505 has three interpolation functions that allow the user to specify the $\mathrm{f}_{\text {CENTER }}$ of the filter using the $\mathrm{f}_{\text {CENTER }}$ load value only. Then, the appropriate capacitor codes are determined automatically. To enable these functions, set the INTERPOLATE bit (Register 0x050) high. Figure 22 shows a simplified diagram of the interpolation functions.


## Figure 22. Interpolation Diagram

When the interpolation functions are enabled, the $\mathrm{f}_{\text {CENTER }}$ load range is 0 to 255 , where 0 corresponds to the lowest frequency, and 255 corresponds to the highest frequency. For example, a value of 0 corresponds to approximately 225 MHz , and 255 corresponds to approximately 520 MHz . The f f CNTER load value is used to determine the appropriate capacitor codes based on the on-chip interpolation coefficients.

By default, the recommended interpolation coefficients are set for nominal bandwidth. The interpolation coefficients can be adjusted between $\pm 2 \%$ of nominal bandwidth with reasonable insertion loss. Narrower bandwidth, down to approximately $5 \%$, can also be achieved at the expense of insertion loss.

## THEORY OF OPERATION

## INTERPOLATION EQUATIONS

The following equations describe the input to the interpolation functions:

$$
\begin{align*}
& f_{\text {CMIN }}=\min \left(f_{\text {CENTER }}\right)  \tag{1}\\
& f_{\text {CMAX }}=\max \left(f_{\text {CENTER }}\right)  \tag{2}\\
& f_{\text {CSTEP }} \approx \frac{f_{\text {CMAX }}-f_{\text {CMIN }}}{255}  \tag{3}\\
& x=\text { FC_LOAD_X }, \quad \text { Bits }[7: 0] \tag{4}
\end{align*}
$$

The anticipated $\mathrm{f}_{\text {CENTER }}$ of the filter is then computed as follows:
$f_{\text {CENTER }} \approx f_{\text {CMIN }}+f_{\text {CSTEP }} \times x$
The equations for the interpolation function of $y=f(x)$ that determines the capacitor codes $\left(\mathrm{C}_{\mathrm{FC}}\right)$ are shown in Table 6.
Table 6. Equations for $y=f(x)$

Condition	Logic Shift Form ${ }^{1}$
If $(0 \leq x<16)$	$y=Y 1+(((16-x)(Y 0-Y 1)) \gg 4)$
If $(16 \leq x<32)$	$y=Y 2+(((32-x)(Y 1-Y 2)) \gg 4)$
If $(32 \leq x<64)$	$y=Y 3+(((64-x)(Y 2-Y 3)) \gg 5)$
If $(64 \leq x<96)$	$y=Y 4+(((96-x)(Y 3-Y 4)) \gg 5)$
If $(96 \leq x<128)$	$y=Y 5+(((128-x)(Y 4-Y 5)) \gg 5)$
If $(128 \leq x<160)$	$y=Y 6+(((160-x)(Y 5-Y 6)) \gg 5)$
If $(160 \leq x<192)$	$y=Y 7+(((192-x)(Y 6-Y 7)) \gg 5)$
If $(192 \leq x<224)$	$y=Y 8+(((224-x)(Y 7-Y 8)) \gg 5)$
If $(224 \leq x<255)$	$y=Y 9+(((256-x)(Y 8-Y 9)) \gg 5)$
Else	$y=Y 9$

1 YO to Y 9 are the $\mathrm{f}_{\mathrm{CENTER}}$ coefficients.
The equations for the interpolation function of $v=f(y)$ that determines the bandwidth capacitor codes $\left(\mathrm{C}_{\mathrm{BW}}\right)$ are shown in Table 7.

Table 7. Equations for $v=f(y)$

Condition	Logic Shift Form ${ }^{1}$
If $(0 \leq y<32)$	$v=V 0+((y \times(V 1-V 0)) \gg 5)$
If $(32 \leq y<255)$	$v=V 1+(((y-32)(V 2-V 1) \times 295) \gg 16)$
Else	$v=V 2$

1 YO to Y 2 are the bandwidth coefficients.
The equations for the interpolation function of $t=f(y)$ that determines the match capacitor codes $\left(\mathrm{C}_{\text {MATCH }}\right)$ are shown in Table 8.
Table 8. Equations for $t=f(y)$

Condition	Logic Shift Form ${ }^{1}$
If $(0 \leq y<32)$	$t=T 0+((y \times(T 1-T 0)) \gg 5)$
If $(32 \leq y<255)$	$t=T 1+(((y-32)(T 2-T 1) \times 295) \gg 16)$
Else	$t=T 2$

[^0]
## INTERPOLATION TABLES

Solving the interpolation equations for the lower bounds of each condition in the interpolation function of $y=f(x)$ yields what is detailed in Table 9.

Table 9. Equations for Anticipated $f_{\text {CENTER }}$ for Each Significant $x$ Value

x	$\mathrm{f}_{\text {CENTER }}$	$y=f(x)$
0	$\mathrm{f}_{\text {CENTER }} \approx \mathrm{f}_{\text {CMIN }}$	YO
16	$\mathrm{f}_{\text {CENTER }} \approx \mathrm{f}_{\text {CMIN }}+\mathrm{f}_{\text {CSTEP }} \times 16$	Y1
32	$\mathrm{f}_{\text {CENTER }} \approx \mathrm{f}_{\text {CMIN }}+\mathrm{f}_{\text {CSTEP }} \times 32$	Y2
64	$\mathrm{f}_{\text {CENTER }} \approx \mathrm{f}_{\text {CMIN }}+\mathrm{f}_{\text {CSTEP }} \times 64$	Y3
96	$\mathrm{f}_{\text {CENTER }} \approx \mathrm{f}_{\text {CMIN }}+\mathrm{f}_{\text {CSTEP }} \times 96$	Y4
128	$\mathrm{f}_{\text {CENTER }} \sim \mathrm{f}_{\text {CMIN }}+\mathrm{f}_{\text {CSTEP }} \times 128$	Y5
160	$\mathrm{f}_{\text {CENTER }} \approx \mathrm{f}_{\text {CMIN }}+\mathrm{f}_{\text {CSTEP }} \times 160$	Y6
192	$\mathrm{f}_{\text {CENTER }} \approx \mathrm{f}_{\text {CMIN }}+\mathrm{f}_{\text {CSTEP }} \times 192$	Y7
224	$\mathrm{f}_{\text {CENTER }} \approx \mathrm{f}_{\text {CMIN }}+\mathrm{f}_{\text {CSTEP }} \times 224$	Y8
255	$\mathrm{f}_{\text {CENTER }} \approx \mathrm{f}_{\text {CMAX }}$	Y9

Similarly, solving the equations for the lower bounds of each condition in the interpolation functions of $v=f(y)$ and $t=f(y)$ yields what is detailed in Table 10.
Table 10. Equations for $v=f(y)$ and $t=f(y)$ for Each Significant $y$ Value

$y$	$v=f(y)$	$t=f(y)$
0	V0	T0
32	V1	T1
255	V2	T2

## THEORY OF OPERATION

## INTERPOLATION PLOTS

To garner a visual representation of the interpolation functions, the interpolation coefficients vs. their input (from the interpolation tables) can be plotted on a scatter plot. Figure 23, Figure 24, and Figure 25 are the interpolation functions of $\mathrm{y}, \mathrm{v}$, and tusing the interpolation coefficients.


Figure 23. Interpolation Function of $y=f(x)$


Figure 24. Interpolation Function of $v=f(y)$


Figure 25. Interpolation Function of $t=f(y)$

## INTERPOLATION COEFFICIENT CALIBRATION

The two primary reasons for the need to calibrate the interpolation coefficients include accounting for chip process variation and a different required operating bandwidth. The calibration of interpolation coefficients normally follows a four phase process (see Figure 27).

In the first calibration phase, the bandwidth and match coefficients, V 1 and T 1 , are determined for a desired bandwidth. To perform this calibration phase, the f $\mathrm{f}_{\text {CENTER }}$ load value must be set to 32 . Then, the bandwidth and match load values are adjusted. When satisfied with the results, the V1 and T1 coefficients can be set to the bandwidth and match load values, respectively.
For the second calibration phase, the bandwidth and match coefficients, V2 and T2, are determined for a desired bandwidth. To perform this calibration phase, the $\mathrm{f}_{\text {CENTER }}$ load value must be set to a high value ( 180 is recommended). Then, the bandwidth and match load values are adjusted. When satisfied with the results, the V2 coefficient can be adjusted so that the computed result of $v=$ $f(y)=f(180)$ is equal to the bandwidth load value. Similarly, the T2 coefficient can be adjusted so that the computed result of $\mathrm{t}=\mathrm{f}(\mathrm{y})=$ $f(180)$ is equal to the match load value.
For the third calibration phase, the bandwidth and match coefficients, V 0 and T 0 , are determined for a desired bandwidth. To perform this calibration phase, the fCEnter load value must be set to a low value ( 18 is recommended). Then, the bandwidth and match load values are adjusted. When satisfied with the results, the V0 coefficient can be adjusted so that the computed result of $v=$ $f(y)=f(18)$ is equal to the bandwidth load value. Similarly, the T0 coefficient can be adjusted so that the computed result of $t=f(y)=$ $f(18)$ is equal to the match load value.
For the fourth calibration phase, adjustments are made to all of the y coefficients to ensure the operating $f_{\text {CENTER }}$ is as close as possible to the anticipated $\mathrm{f}_{\text {CENTER. }}$. To perform this calibration phase, use Table 9 as a reference for determining the target frequency for each $y$ coefficient. For each $x$ value listed in Table 9 , compute the $y, v$,

## THEORY OF OPERATION

and f functions, and then, set the $\mathrm{f}_{\text {CENTER }}$, bandwidth, and match load values, respectively.

## FILTER CODE READ BACK

The capacitor codes that are applied to the filter can be read back from the chip using Register $0 \times 060$ to Register $0 \times 062$. These registers represent the actual state of the capacitors on chip. This information can be useful for debugging purposes or during interpolation coefficient calibration.

## SPI FAST LATCH MODE

The ADMV8505 has a 32-state LUT and an internal state machine that is useful for quickly changing filter states in the SPI fast latch mode. When the SFL pin is high, the SPI fast latch mode enables, and the internal state machine sequences on each rising edge of the $\overline{\mathrm{CS}}$ pin.
The LUT has 32 groupings, LUT0 through LUT31, in Register $0 \times 100$ through Register $0 \times 15 F$. Each grouping consists of the same type of parameters as those for the SPI write mode.

The functionality of the internal state machine is such that on each rising edge of the $\overline{C S}$ pin, the internal state machine sequences a pointer based on the programmed direction.

The internal state machine has the following parameters:

```
- FAST_LATCH_STOP (Register 0x011)
- FAST_LATCH_START (Register 0x012)
- FAST_LATCH_DIRECTION (Register 0x013)
- FAST_LATCH_STATE (Register 0x014)
```

The FAST_LATCH_STATE is the next LUT grouping that is selected on the next rising edge of the CS pin. The FAST_LATCH_STATE is considered the internal pointer location.
When the FAST_LATCH_DIRECTION bit is set to 0 , the sequencing direction is incremental. When the FAST_LATCH_DIRECTION bit is set to 1 , the sequencing direction is decremental.
The FAST_LATCH_START and FAST_LATCH_STOP bits are used to set the start location and the stop location, respectively. For incremental direction, the internal state machine sequences from the start location to the stop location and then rolls over to the start location. For the decremental direction, the sequence is from the stop location to the start location and then rolls over to the stop location.

The FAST_LATCH_STATE internal pointer is set to the values stored in FAST_LATCH_START for the incremental direction. For the decremental direction, the internal pointer is set to the values stored in FAST_LATCH_STOP. For this transaction to occur, one rising edge of the $\overline{\mathrm{CS}}$ pin is necessary. By nature, this occurs during an SPI transaction in the SPI write mode. However, when exiting the SPI fast latch mode (SFL pin brought low), be sure to toggle the $\overline{\text { CS pin low then high or to perform an SPI transaction so that the }}$

FAST_LATCH_STATE refreshes to either the start or stop location accordingly.

## CHIP RESET

Two methods are available to reset the ADMV8505 registers to their default power-on state, a hard reset and a soft reset. The hard reset uses the RST pin, and the soft reset utilizes Register 0x000.
To perform a hard reset, momentarily bring the $\overline{\text { RST }}$ pin low and then high. See Figure 2 for the minimum required duration time for the $\overline{\text { RST }}$ pin to be low.

To perform a soft reset, set Register $0 \times 000$ to $0 \times 81$. This action sets the SOFTRESET and SOFTRESET_ bits high to initiate the reset. The SOFTRESET and SOFTRESET_ bits are self resetting once the reset operation completes.

Regardless of the reset method used, it is recommended to perform the following after the chip resets:

- Set Register 0x000 to 0x3C to enable the SDO pin and allow SPI streaming with Endian ascending order.
- Read back all registers on the chip.


## APPLICATIONS INFORMATION

## INTERPOLATION COEFFICIENTS

For reference, the ADMV8505 interpolation coefficients that were used for device characterization are listed in Table 11. These interpolation coefficients are provided as a good starting point for use in a system. Depending upon the system requirements and allowable process tolerance, some minor adjustments may be needed to the interpolation coefficients. For most applications, the device process tolerance within a particular lot of material allows for one set of interpolation coefficients, such that interpolation coefficient calibration only needs to be performed once per lot. Refer to the Interpolation Coefficient Calibration section for more information on how to adjust the interpolation coefficients.

Table 11. Interpolation Coefficients

			Narrow   Bandwidth	Nominal   Bandwidth
Coefficient	Bide   Bandwidth			
Y0	INTERP_FC_Y0	187	192	194
Y1	INTERP_FC_Y1	157	161	162
Y2	INTERP_FC_Y2	133	136	137
Y3	INTERP_FC_Y3	97	100	101
Y4	INTERP_FC_Y4	74	75	76
Y5	INTERP_FC_Y5	56	58	58
Y6	INTERP_FC_Y6	44	45	45
Y7	INTERP_FC_Y7	34	35	36
Y8	INTERP_FC_Y8	27	28	28
Y9	INTERP_FC_Y9	21	22	22
V0	INTERP_BW_V0	6	3	0
V1	INTERP_BW_V1	15	7	0
V2	INTERP_BW_V2	71	33	0
T0	INTERP_MATCH_T0	8	9	9
T1	INTERP_MATCH_T1	28	34	41
T2	INTERP_MATCH_T2	146	174	199

## PRINTED CIRCUIT BOARD (PCB) DESIGN GUIDELINES

The PCB used to implement the ADMV8505 can use standard quality dielectric materials between the top metallization layer and the internal ground layer, such as the Isola 370HR. The Rogers 4003 or the Rogers 4350 do not have to be used. The characteristic impedance of the transmission lines to the RF1 and RF2 pins of the ADMV8505 must be controlled to $50 \Omega$ to ensure optimal RF performance. Connect the GND pins and exposed pads of the ADMV8505 directly to the ground plane of the PCB. Use a sufficient number of via holes to connect the top and bottom ground planes of the PCB.

## FLOW CHARTS



Figure 26. Programming Flow Chart

## FLOW CHARTS



Figure 27. Interpolation Coefficient Calibration Flow Chart

## REGISTER SUMMARY

Table 12. ADMV8505 Register Summary

Reg	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x000	ADI_SPI_CONFIG_A	[7:0]	SOFTRESET_	$\begin{aligned} & \text { LSB_FIRS } \\ & T_{-} \end{aligned}$	ENDIAN_	$\begin{aligned} & \text { SDOAC- } \\ & \text { TIVE__ } \end{aligned}$	SDOAC-   TIVE	ENDIAN	$\begin{aligned} & \text { LSB_FIRS } \\ & T \end{aligned}$	SOFTRESET	0x00	R/W
$0 \times 001$	ADI_SPI_CONFIG_B	[7:0]	SIN-   GLE_IN-   STRUC-   TION	$\begin{aligned} & \text { CSB_STA } \\ & \text { LL } \end{aligned}$	CON-   TROL-   LER_TAR-   GET_RB	RESERVED				CON-   TROL-   LER_TARGET_TRA NSFER	0x00	R/W
$0 \times 003$	CHIPTYPE	[7:0]	CHIPTYPE								0x01	R
0x004	PRODUCT_ID_L	[7:0]	PRODUCT_ID_L								0x05	R
0x005	PRODUCT_ID_H	[7:0]	PRODUCT_ID_H								0x85	R
0x00C	VARIANT	[7:0]	RESERVED				VARIANT				0x01	R
0x011	FAST_LATCH_STOP	[7:0]	RESERVED	FAST_LATCH_STOP							0x7F	R/W
$0 \times 012$	FAST_LATCH_START	[7:0]	RESERVED	FAST_LATCH_START							0x00	R/W
$0 \times 013$	FAST_LATCH_DIRECTION	[7:0]	RESERVED								0x00	R/W
$0 \times 014$	FAST_LATCH_STATE	[7:0]	RESERVED	FAST_LATCH_STATE							0x00	R
$0 \times 020$	WR_FC	[7:0]	FC_LOAD_WR								0x00	R/W
$0 \times 021$	WR_BW	[7:0]	BW_LOAD_WR								0x00	R/W
$0 \times 022$	WR_MATCH	[7:0]	MATCH_LOAD_WR								0x00	RW
0x050	FlLTER_CONFIG	[7:0]	RESERVED							INTERPOLATE	0x00	R/W
$0 \times 060$	FC_READBACK	[7:0]	FC_READBACK								0x00	R
0x061	BW_READBACK	[7:0]	BW_READBACK								0x00	R
$0 \times 062$	MATCH_READBACK	[7:0]	MATCH_READBACK								0x00	R
0x100	LUTO_FC	[7:0]	FC_LOAD_0								0x00	R/W
0x101	LUTO_BW	[7:0]	BW_LOAD_0								0x00	R/W
0x102	LUTO_MATCH	[7:0]	MATCH_LOAD_0								0x00	R/W
0x103	LUT1_FC	[7:0]	FC_LOAD_1								0x00	R/W
0x104	LUT1_BW	[7:0]	BW_LOAD_1								0x00	R/W
0x105	LUT1_MATCH	[7:0]	MATCH_LOAD_1								0x00	R/W
0x106	LUT2_FC	[7:0]	FC_LOAD_2								0x00	R/W
0x107	LUT2_BW	[7:0]	BW_LOAD_2								0x00	R/W
0x108	LUT2_MATCH	[7:0]	MATCH_LOAD_2								0x00	R/W
0x109	LUT3_FC	[7:0]	FC_LOAD_3								0x00	R/W
0x10A	LUT3_BW	[7:0]	BW_LOAD_3								0x00	R/W
0x10B	LUT3_MATCH	[7:0]	MATCH_LOAD_3								0x00	R/W
0x10C	LUT4_FC	[7:0]	FC_LOAD_4								0x00	R/W
0x10D	LUT4_BW	[7:0]	BW_LOAD_4								0x00	R/W
0x10E	LUT4_MATCH	[7:0]	MATCH_LOAD_4								0x00	R/W
0x10F	LUT5_FC	[7:0]	FC_LOAD_5								0x00	R/W
0x110	LUT5_BW	[7:0]	BW_LOAD_5								0x00	R/W

## REGISTER SUMMARY

Table 12. ADMV8505 Register Summary (Continued)

Reg	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
$0 \times 111$	LUT5_MATCH	[7:0]					LOAD_5				0x00	RW
$0 \times 112$	LUT6_FC	[7:0]					AD_6				0x00	RW
0x113	LUT6_BW	[7:0]					AD_6				0x00	RW
0x114	LUT6_MATCH	[7:0]					LOAD_6				0x00	RW
0x115	LUT7_FC	[7:0]					AD_7				0x00	RW
0x116	LUT7_BW	[7:0]					AD_7				0x00	RW
0x117	LUT7_MATCH	[7:0]					LOAD_7				0x00	RW
$0 \times 118$	LUT8_FC	[7:0]					AD_8				0x00	RW
0x119	LUT8_BW	[7:0]					OAD_8				0x00	RW
$0 \times 11 \mathrm{~A}$	LUT8_MATCH	[7:0]					LOAD_8				0x00	RW
0x11B	LUT9_FC	[7:0]					AD_9				0x00	RW
0x11C	LUT9_BW	[7:0]					OAD_9				0x00	RW
0x11D	LUT9_MATCH	[7:0]					LOAD_9				0x00	RW
0x11E	LUT10_FC	[7:0]					AD_10				0x00	RW
0x11F	LUT10_BW	[7:0]					AD_10				0x00	RW
0x120	LUT10_MATCH	[7:0]					OAD_10				0x00	RW
$0 \times 121$	LUT11_FC	[7:0]					AD_11				0x00	RW
0x122	LUT11_BW	[7:0]					AD_11				0x00	RW
0x123	LUT11_MATCH	[7:0]					-OAD_11				0x00	RW
0x124	LUT12_FC	[7:0]					AD_12				0x00	RW
0x125	LUT12_BW	[7:0]					AD_12				0x00	RW
0x126	LUT12_MATCH	[7:0]					OAD_12				0x00	RW
$0 \times 127$	LUT13_FC	[7:0]					AD_13				0x00	RW
0x128	LUT13_BW	[7:0]					AD_13				0x00	RW
0x129	LUT13_MATCH	[7:0]					OAD_13				0x00	RW
0x12A	LUT14_FC	[7:0]					AD_14				0x00	RW
0x12B	LUT14_BW	[7:0]					AD_14				0x00	RW
0x12C	LUT14_MATCH	[7:0]					OAD_14				0x00	RW
0x12D	LUT15_FC	[7:0]					AD_15				0x00	RW
0x12E	LUT15_BW	[7:0]					AD_15				0x00	RW
0x12F	LUT15_MATCH	[7:0]					OAD_15				0x00	RW
0x130	LUT16_FC	[7:0]					AD_16				0x00	RW
0x131	LUT16_BW	[7:0]					AD_16				0x00	RW
$0 \times 132$	LUT16_MATCH	[7:0]					OAD_16				0x00	RW
$0 \times 133$	LUT17_FC	[7:0]					AD_17				0x00	RW
0x134	LUT17_BW	[7:0]					AD_17				0x00	RW
0x135	LUT17_MATCH	[7:0]					OAD_17				0x00	RW
$0 \times 136$	LUT18_FC	[7:0]					AD_18				0x00	RW
0x137	LUT18_BW	[7:0]					AD_18				0x00	RW
0x138	LUT18_MATCH	[7:0]					OAD_18				0x00	RW
0x139	LUT19_FC	[7:0]					AD_19				0x00	RW
0x13A	LUT19_BW	[7:0]					AD_19				0x00	RW
0x13B	LUT19_MATCH	[7:0]					OAD_19				0x00	RW

## REGISTER SUMMARY

Table 12. ADMV8505 Register Summary (Continued)


## REGISTER SUMMARY

Table 12. ADMV8505 Register Summary (Continued)


## REGISTER DETAILS

## Address: 0x000, Reset: 0x00, Name: ADI_SPI_CONFIG_A



Table 13. Bit Descriptions for ADI_SPI_CONFIG_A

Bits	Bit Name	Description	Reset	Access
7	SOFTRESET_	Soft Reset.   0: Reset Not Asserted.   1: Reset Asserted.	R	

Address: 0x001, Reset: 0x00, Name: ADI_SPI_CONFIG_B


## REGISTER DETAILS

Table 14. Bit Descriptions for ADI_SPI_CONFIG_B

Bits	Bit Name	Description	Reset	Access
7	SINGLE_INSTRUCTION	Single Instruction.   $0:$ Enable Streaming.   $1:$ Disable Streaming Regardless of CSB.	$0 \times 0$	R/W
6	CSB_STALL	$\overline{\text { CS Stall. }}$	Controller Target Readback.	$0 \times 0$
5	CONTROLLER_TARGET_RB	Reserved.	R/W	
$[4: 1]$	RESERVED	Controller Target Transfer.	$0 \times 0$	R/W
0	CONTROLLER_TARGET_TRANSFER	$0 \times 0$	R	

Address: 0x003, Reset: 0x01, Name: CHIPTYPE


Table 15. Bit Descriptions for CHIPTYPE

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	CHIPTYPE	Chip Type, Read Only.	$0 \times 1$	R

Address: 0x004, Reset: 0x05, Name: PRODUCT_ID_L


Table 16. Bit Descriptions for PRODUCT_ID_L

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	PRODUCT_ID_L	PRODUCT_ID_L, Lower 8 Bits.	$0 \times 5$	R

Address: 0x005, Reset: 0x85, Name: PRODUCT_ID_H


Table 17. Bit Descriptions for PRODUCT_ID_H

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	PRODUCT_ID_H	PRODUCT_ID_H, Higher 8 Bits.	$0 \times 85$	R

Address: 0x00C, Reset: 0x01, Name: VARIANT


## REGISTER DETAILS

Table 18. Bit Descriptions for VARIANT

Bits	Bit Name	Description
$[7: 4]$	RESERVED	Reserved.

Address: 0x011, Reset: 0x7F, Name: FAST_LATCH_STOP


Table 19. Bit Descriptions for FAST_LATCH_STOP

| Bits | Bit Name | Description | Reset | Access |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | RESERVED | Reserved. | $0 \times 0$ | R |
| $[6: 0]$ | FAST_LATCH_STOP | Fast Latch Stop Index. This sets the stop index within the fast latch lookup table. | $0 \times 77$ | RW |

Address: 0x012, Reset: 0x00, Name: FAST_LATCH_START


Table 20. Bit Descriptions for FAST_LATCH_START

Bits	Bit Name	Description	Reset	Access
7	RESERVED	Reserved.	$0 \times 0$	R
$[6: 0]$	FAST_LATCH_START	Fast Latch Start Index. This sets the start index within the fast latch lookup table.	$0 \times 0$	R/W

Address: 0x013, Reset: 0x00, Name: FAST_LATCH_DIRECTION


Table 21. Bit Descriptions for FAST_LATCH_DIRECTION

Bits	Bit Name	Description	Reserved.	Reset	Access
$[7: 1]$	RESERVED	FAST_LATCH_DIRECTION	Fast Latch Direction. This bit determines which direction to sequence within the fast latch lookup table.   When the direction is set to increment, then the internal state machine will be set to the start index.   When the direction is set to decrement, then the internal state machine will be set to the stop index.   0: Increment.   1: Decrement.	Ox0	R
0		R/W			

Address: 0x014, Reset: 0x00, Name: FAST_LATCH_STATE


## REGISTER DETAILS

Table 22. Bit Descriptions for FAST_LATCH_STATE

Bits	Bit Name	Description	Reset	Access	
7	RESERVED	Reserved.	Fast Latch State. Reads back the internal state machine index for fast latch lookup table (SFL mode). This   index is the next location the internal state machine will advance to, on the next CSB rising edge. The internal   state machine index will be set to the start index if the direction is set to increment and will be set to the stop   index if the direction set to is decrement. Upon changes to the start index, stop index, and direction, the index   will update accordingly.	0x0	R
$[6: 0]$	FAST_LATCH_STATE				

Address: 0x020, Reset: 0x00, Name: WR_FC


Table 23. Bit Descriptions for WR_FC

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	FC_LOAD_WR	Write Group: Center Frequency.	$0 \times 0$	R/W

Address: 0x021, Reset: 0x00, Name: WR_BW


Table 24. Bit Descriptions for WR_BW

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	BW_LOAD_WR	Write Group: Bandwidth.	$0 \times 0$	R/W

## Address: 0x022, Reset: 0x00, Name: WR_MATCH

$\qquad$7 6 5 4 3 2 1 0   0 0 0 0 0 0 0 0
[7:0] MATCH_LOAD_W R (R/W)   Write Group: Match

Table 25. Bit Descriptions for WR_MATCH

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	MATCH_LOAD_WR	Write Group: Match.	$0 \times 0$	R/W

## REGISTER DETAILS

Address: $0 \times 050$, Reset: $0 \times 00$, Name: FILTER_CONFIG


Table 26. Bit Descriptions for FILTER_CONFIG

| Bits | Bit Name | Description | Reset | Access |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $[7: 1]$ | RESERVED | Reserved. | $0 \times 0$ | R |
| 0 | INTERPOLATE | Interpolation Enable. When this bit is set to zero, then must program center frequency, bandwidth, and match. When <br> this bit is set to one, then capacitors for center frequency, bandwidth and match will be determined from interpolation. | Ox0 | R/W |

Address: 0x060, Reset: 0x00, Name: FC_READBACK


Table 27. Bit Descriptions for FC_READBACK

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	FC_READBACK	Center Frequency Read Back.	$0 \times 0$	R

Address: 0x061, Reset: 0x00, Name: BW_READBACK


Table 28. Bit Descriptions for BW_READBACK

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	BW_READBACK	Bandwidth Read Back.	$0 \times 0$	R

Address: 0x062, Reset: 0x00, Name: MATCH_READBACK


Table 29. Bit Descriptions for MATCH_READBACK

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	MATCH_READBACK	Match Read Back.	$0 \times 0$	R

Address: 0x100, Reset: 0x00, Name: LUT0_FC


## REGISTER DETAILS

Table 30. Bit Descriptions for LUTO_FC

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	FC_LOAD_0	LUT 000: Center Frequency.	$0 \times 0$	R/W

Address: 0x101, Reset: 0x00, Name: LUTO_BW


Table 31. Bit Descriptions for LUTO_BW

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	BW_LOAD_0	LUT 000: Bandwidth.	$0 \times 0$	R/W

Address: $0 \times 102$, Reset: $0 \times 00$, Name: LUTO_MATCH


Table 32. Bit Descriptions for LUTO_MATCH

| Bits | Bit Name | Description | Reset | Access |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $[7: 0]$ | MATCH_LOAD_0 | LUT 000: Match. | $0 \times 0$ | R/W |

## Address: $0 \times 103$ to $0 \times 15 F$, Reset: $0 \times 00$

The LUT1 to LUT31 bit field functionality (Register $0 \times 103$ through Register 0x15F) is similar to LUT0 (Register $0 \times 100$ through Register 0x102), see Table 12 for the register address information.
Address: 0x300, Reset: 0xCO, Name: INTERP_FC_YO


Table 33. Bit Descriptions for INTERP_FC_Y0

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	INTERP_FC_Y0	Center Frequency Interpolation Point Y0.	$0 \times C 0$	R/W

Address: 0x301, Reset: 0xA1, Name: INTERP_FC_Y1


Table 34. Bit Descriptions for INTERP_FC_Y1

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	INTERP_FC_Y1	Center Frequency Interpolation Point Y1.	0xA1	R/W

## REGISTER DETAILS

Address: 0x302, Reset: 0x88, Name: INTERP_FC_Y2


Table 35. Bit Descriptions for INTERP_FC_Y2

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	INTERP_FC_Y2	Center Frequency Interpolation Point Y2.	$0 \times 88$	R/W

Address: 0x303, Reset: 0x64, Name: INTERP_FC_Y3


Table 36. Bit Descriptions for INTERP_FC_Y3

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	INTERP_FC_Y3	Center Frequency Interpolation Point Y3.	$0 \times 64$	R/W

Address: 0x304, Reset: 0x4B, Name: INTERP_FC_Y4


Table 37. Bit Descriptions for INTERP_FC_Y4

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	INTERP_FC_Y4	Center Frequency Interpolation Point Y4.	$0 \times 4 \mathrm{~B}$	R/W

Address: 0x305, Reset: 0x3A, Name: INTERP_FC_Y5

[7:0] INTERP_FC_Y5 (R/W)
Center Frequency Interpolation Point Y5

Table 38. Bit Descriptions for INTERP_FC_Y5

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	INTERP_FC_Y5	Center Frequency Interpolation Point Y5.	$0 \times 3 \mathrm{~A}$	R/W

Address: 0x306, Reset: 0x2D, Name: INTERP_FC_Y6


Table 39. Bit Descriptions for INTERP_FC_Y6

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	INTERP_FC_Y6	Center Frequency Interpolation Point Y6.	Ox2D	R/W

## REGISTER DETAILS

Address: 0x307, Reset: 0x23, Name: INTERP_FC_Y7


Table 40. Bit Descriptions for INTERP_FC_Y7

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	INTERP_FC_Y7	Center Frequency Interpolation Point Y7.	Ox23	R/W

Address: 0x308, Reset: 0x1C, Name: INTERP_FC_Y8


Table 41. Bit Descriptions for INTERP_FC_Y8

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	INTERP_FC_Y8	Center Frequency Interpolation Point Y8.	$0 \times 1 \mathrm{C}$	R/W

Address: 0x309, Reset: 0x16, Name: INTERP_FC_Y9


Table 42. Bit Descriptions for INTERP_FC_Y9

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	INTERP_FC_Y9	Center Frequency Interpolation Point Y9.	$0 \times 16$	R/W

Address: 0x30A, Reset: 0x03, Name: INTERP_BW_V0


Table 43. Bit Descriptions for INTERP_BW_VO

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	INTERP_BW_V0	Bandwidth Interpolation Point V0.	$0 \times 3$	R/W

Address: 0x30B, Reset: 0x07, Name: INTERP_BW_V1


## REGISTER DETAILS

Table 44. Bit Descriptions for INTERP_BW_V1

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	INTERP_BW_V1	Bandwidth Interpolation Point V1.	$0 \times 7$	R/W

Address: 0x30C, Reset: 0x21, Name: INTERP_BW_V2


Table 45. Bit Descriptions for INTERP_BW_V2

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	NTERP_BW_V2	Bandwidth Interpolation Point V2.	$0 \times 21$	R/W

Address: 0x30D, Reset: 0x09, Name: INTERP_MATCH_TO


Table 46. Bit Descriptions for INTERP_MATCH_TO

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	INTERP_MATCH_T0	Match Interpolation Point T0.	Ox9	R/W

Address: 0x30E, Reset: 0x22, Name: INTERP_MATCH_T1

[7:0] INTERP_MATCH_T1 (R/W)
Match Interpolation Point T1

Table 47. Bit Descriptions for INTERP_MATCH_T1

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	INTERP_MATCH_T1	Match Interpolation Point T1.	$0 \times 22$	RW

Address: 0x30F, Reset: 0xAE, Name: INTERP_MATCH_T2


Table 48. Bit Descriptions for INTERP_MATCH_T2

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	INTERP_MATCH_T2	Match Interpolation Point T2.	OxAE	R/W

## OUTLINE DIMENSIONS

Package Drawing (Option)	Package Type	Package Description
CC-40-17	LGA	40 -Terminal Land Grid Array

For the latest package outline information and land patterns (footprints), go to Package Index.
Updated: April 01, 2024

## ORDERING GUIDE

Model ${ }^{1}$	Temperature Range	Package Description	Package	
Option				

1 Z = RoHS Compliant Part.

## EVALUATION BOARDS

Model 1	Description
ADMV8505-EVALZ	Evaluation Board
${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.	


[^0]:    1 TO to T 2 are the match coefficients.

