Low-Noise, High-Linearity
 Broadband Amplifier

General Description

The MAX3524 broadband amplifier is designed specifically for cable television receiver and cable modem applications. The MAX3524 is a single-ended input, dif-ferential-output low-noise amplifier (LNA) that offers 15 dB of gain. It operates from $\mathrm{a}+4.75 \mathrm{~V}$ to +5.25 V single supply from 44 MHz to 880 MHz . The MAX3524 includes an operational amplifier that is used to control an off-chip PIN attenuator circuit at the input of the LNA. The attenuator is typically used to regulate the input signal to a value that maintains high linearity for large signals. The MAX3524 is available in a 10-pin $\mu M A X{ }^{\circledR}$ package with an exposed paddle (EP) and operates in the extended temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$.

Applications
Cable Modems
Cable Set-Top Boxes
Broadband Amplifiers
CATV Infrastructures

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX3524EVB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}-E P^{*}$
MAX3524EVB +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}-\mathrm{EP}^{*}$

*EP = Exposed paddle.
+Denotes lead-free package.
$\mu M A X$ is a registered trademark of Maxim Integrated Products, Inc.

- Single-Ended Input, Differential Output
- +4.75V to +5.25V Single-Supply Operation
- Broadband Operation: 44MHz to 880MHz
- Low Noise Figure: 4.2dB
- High Linearity: IIP2 (42dBm), IIP3(14dBm)
- Voltage Gain: 15dB
- Independent On-Chip Op Amp

Typical Application Circuit

Pin Configuration appears at end of data sheet.

Low-Noise, High-Linearity Broadband Amplifier

ABSOLUTE MAXIMUM RATINGS

```
VCC to GND ....................................................-0.3V to +7.0V
RFIN................................................................................0V
PRFIN..........................................................................0dBm
RBIAS (MINIMUM).................................................................5\Omega
RFOUT+, RFOUT-, OPIN-, OPIN+, OPOUT...-0.3V to (Vcc + 0.3V)
RFOUT+, RFOUT- Short-Circuit Duration ............................10s
```

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

CAUTION! ESD SENSITIVE DEVICE

DC ELECTRICAL CHARACTERISTICS

(Typical Application Circuit, $\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}$ to $+5.25 \mathrm{~V}, \mathrm{R}_{\mathrm{BIAS}}=5.9 \Omega, \mathrm{~L}_{\mathrm{BIAS}}=680 \mathrm{nH}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise indicated. Typical values measured at $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1, 2)

PARAMETERS	CONDITIONS	MIN TYP	MAX	UNITS
SUPPLY				
Supply Voltage		4.75	5.25	V
Supply Current		85	95	mA
OPERATIONAL AMPLIFIER				
Common-Mode Input Range		0.5	3.0	V
Maximum Output Voltage	$1 \mathrm{O}=20 \mathrm{~mA}$	$\mathrm{V}_{\text {CC }}-0.5$		V
Minimum Output Voltage	$\mathrm{IO}=20 \mathrm{~mA}$		0.5	V

AC ELECTRICAL CHARACTERISTICS

(MAX3524 EV kit as shown in Figure 1, $\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}$ to +5.25 V , $\mathrm{P}_{\mathrm{RFIN}}=-20 \mathrm{dBm}, \mathrm{Z}_{\mathrm{S}}=75 \Omega, \mathrm{R}_{\mathrm{BI}} \mathrm{AS}=5.9 \Omega$, $\mathrm{L}_{\mathrm{BIAS}}=680 \mathrm{nH}$, $\mathrm{f}_{\mathrm{I}} \mathrm{N}=44 \mathrm{MHz}, \mathrm{Z}_{\mathrm{L}}=50 \Omega \| 2 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$, unless otherwise indicated.) (Notes 2,3)

| PARAMETERS | CONDITIONS | MIN | TYP | MAX | UNITS |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| Operating Frequency Range | | 44 | 880 | MHz | |
| Power Gain (Note 4) | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | 8.0 | 9.8 | 11 | dB |
| | $\mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 7.6 | 11.5 | | |
| Voltage Gain (Note 5) | $\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$ | | 15 | | dB |
| Noise Figure (Note 3) | $\mathrm{fRFIN}=300 \mathrm{MHz}$ | 4.2 | 4.9 | dB | |
| IIP3 (Notes 3, 6) | | 12 | 14 | dBm | |
| IIP2 (Notes 3, 6) | | 40 | 42 | | dBm |
| Output-to-Input Isolation | frFIN $=300 \mathrm{MHz}$ | 40 | 60 | dB | |

Note 1: Parameters are production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$. Limits are guaranteed by design and characterization for $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$.
Note 2: For optimum linearity, the DC resistance of LBIAS in series with RBIAS must be approximately 7.3Ω.
Note 3: Guaranteed by design and characterization.
Note 4: Gain is guaranteed over the operating frequency range, by design and characterization. Insertion loss of balun is subtracted. Production tested at 44 MHz and 880 MHz .
Note 5: Corresponding voltage gain at $\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$, calculated as in Figure 2.
Note 6: Frequencies and input power levels: $275 \mathrm{MHz}, 325 \mathrm{MHz}$, and -20 dBm per tone.

Low-Noise, High-Linearity
 Broadband Amplifier

Typical Operating Characteristics
(MAX3524 EV kit as shown in Figure 1, $V_{C C}=+5 \mathrm{~V}$, PRFIN $=-20 \mathrm{dBm}, \mathrm{Z}_{\mathrm{L}}=50 \Omega \| 2 \mathrm{pF}, \mathrm{R}_{\mathrm{BI}} \mathrm{AS}=5.9 \Omega$, LBIAS $=680 \mathrm{nH}$, insertion loss of balun subtracted, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

POWER GAIN vs. FREQUENCY

IIP3 vs. FREQUENCY

POWER GAIN vs. FREQUENCY

IIP2 vs. FREQUENCY

NOISE FIGURE vs. FREQUENCY

1dB COMPRESSED OUTPUT POWER vs. FREQUENCY

Low-Noise, High-Linearity Broadband Amplifier

Typical Operating Characteristics (continued)

(MAX3524 EV kit as shown in Figure 1, $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{P}_{\mathrm{RFIN}}=-20 \mathrm{dBm}, \mathrm{Z}_{\mathrm{L}}=50 \Omega \| 2 \mathrm{pF}, \mathrm{R}_{\mathrm{BI}} \mathrm{AS}=5.9 \Omega$, LBIAS $=680 \mathrm{nH}$, insertion loss of balun subtracted, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

vs. FREQUENCY

PSRR vs. FREQUENCY

OP AMP CLOSED-LOOP VOLTAGE GAIN
OF 2 vs. FREQUENCY

Pin Description

PIN	NAME	FUNCTION
1,9	VCC	Supply Voltage Input. Connect both pins together. Bypass with a $10 \mu \mathrm{~F}$ and 47pF capacitor to GND.
2	RFIN	RF Input of LNA. Requires DC blocking capacitor.
3	RFGND	Bypass to GND through 10nF capacitor.
4	OPOUT	Operational Amplifier Output
5	OPIN-	Inverting Input of Operational Amplifier
6	BIAS	LNA Bias Setting Pin. For nominal bias, connect 5.9Ω resistor in series with 680nH to GND (total DC resistance $=$ resistance of RBIAS + DC resistance of the inductor $=7.3 \Omega$). The value of the resistor is adjusted to alter the current and therefore linearity of the LNA.
7	OPIN+	Noninverting Input of Operational Amplifier
8	RFOUT-	Inverting Output of LNA
10	RFOUT+	Noninverting Output of LNA
Slug	GND	Ground

Low-Noise, High-Linearity
 Broadband Amplifier

Detailed Description

The MAX3524 is a broadband amplifier with a singleended input and differential outputs, including an operational amplifier that can be used to control an external attenuator circuit. Figure 1 is the MAX3524 EV kit schematic.

Low-Noise Amplifier
The low-noise amplifier operates from 44 MHz to 880 MHz and is designed specifically for cable TV and cable modem applications. The LNA provides 15 dB of insertion voltage gain (see Figure 2) when driving a
$3 \mathrm{k} \Omega$ load. At 300 MHz , the noise figure is 4.2 dB , IIP2 and IIP3 are 42 dBm and 14 dBm , respectively.

Operational Amplifier

The operational amplifier is suitable for interfacing to a PIN attenuator circuit which is typically employed at the input of the LNA. The common-mode input range is 0.5 V to 3 V and the output voltage swing is 0.5 V to VCC 0.5 V while sinking or sourcing 20 mA . Input bias current and input offset voltage are $1 \mu \mathrm{~A}$ and 1 mV , respectively. The open-loop voltage gain is greater than 10,000 . The gain bandwidth product is greater than 1 MHz for a closed-loop voltage gain of one.

Figure 1. MAX3524 EV Kit Schematic

Figure 2. LNA Equivalent Circuit and Open-Circuit Voltage Gain Calculation

Low-Noise, High-Linearity Broadband Amplifier

Table 1. Shunt-Resistor Noise-Figure Values

Rshunt(Ω)	$\|\mathbf{S 1 1}\|$ (LNA) (dB)	NOISE FIGURE (dB)
450	-6	5 to 5.5
250	-8	5.5 to 6
125	-10	6 to 6.5

Applications Information

Bias Current
The resistor, RBIAS, connected between BIAS and GND controls the LNA current. To make the current insensitive to temperature fluctuations, select a 1%, low temperature coefficient resistor for RBIAS. The current drawn by the LNA is calculated using the following formula:

$$
\text { IBIAS } \approx 0.58 \mathrm{~V} /(\text { RBIAS }+\mathrm{DC} \text { resistance of LBIAS })
$$

It is important to include the inductor resistance in the above equation as it is typically 1Ω to 2Ω. The MAX3524 EV kit uses a nominal inductor with DC resistance of 1.4Ω. Higher values of RBIAS may be used to reduce supply current predominantly at the expense of linearity. Circuit board layout and source impedance may require the value of IBIAS to be optimized for best linearity.

Input and Output

 The LNA input is single-ended. The RF input signal is coupled to RFIN through a DC blocking capacitor. The LNA outputs drive a differential load, such as a mixer, through DC blocking capacitors. The equivalent input LNA impedance is 330Ω resistive in parallel with 1.8 pf , as shown in Figure 2. The approximate equivalent differential output impedance of the LNA is 60Ω. To achieve S11 less than -6dB, an insertion loss of greater than 1 dB must exist between the cable input and MAX3524. This loss typically comes from a diplexer and PIN attenuator in a cable modem application. A shunt resistor may be added at the input of the LNA to improve the return loss (S11). Typically the return loss of the system is 2 dB better, as explained above. The S11 and noise-figure values for different shunt resistors are given in Table 1.
RF Input Power Control Using the Operational Amplifier

In a cable system, the power level at the LNA input is typically restricted to a maximum value to maintain linearity. This is accomplished by connecting a variable attenuator at the input of the LNA and varying the attenuation with the operational amplifier output. The operational amplifier receives a DC control input that is proportional to LNA output power. See Typical Application Circuit.

Layout Issues
A properly designed PC board is essential to any RF/microwave circuit. Use short interconnect and controlled impedance lines on all high-frequency inputs and outputs. Use low inductance connections to ground on all GND nodes and place decoupling capacitors close to all Vcc connections. The EP is the ground for the MAX3524 and must be soldered to ground for proper operation.

Pin Configuration

Chip Information
TRANSISTOR COUNT: 550

Low-Noise, High-Linearity
 Broadband Amplifier

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

MAX3524

Part Number Table

Notes:

1. See the MAX3524 QuickView Data Sheet for further information on this product family or download the MAX3524 full data sheet (PDF, 180kB).
2. Other options and links for purchasing parts are listed at: http://www.maxim-ic.com/sales.
3. Didn't Find What You Need? Ask our applications engineers. Expert assistance in finding parts, usually within one business day.
4. Part number suffixes: T or T\&R = tape and reel; + = RoHS/lead-free; \# = RoHS/lead-exempt. More: See full data sheet or Part Naming Conventions.
5. * Some packages have variations, listed on the drawing. "PkgCode/Variation" tells which variation the product uses

Part Number	Free Sample	Buy Direct	Package: TYPE PINS SIZE DRAWING CODE/VAR	Temp	RoHS/Lead-Free? Materials Analysis
MAX3524EUB			uMAX;10 pin;3 x 3mm Dwg: 21-0109D (PDF) Use pkgcode/variation: U10E-3*	-40C to +85 C	RoHS/Lead-Free: No Materials Analysis
MAX3524EUB-T			uMAX;10 pin;3 x 3mm Dwg: 21-0109D (PDF) Use pkgcode/variation: U10E-3*	-40 C to +85 C	RoHS/Lead-Free: No Materials Analysis
MAX3524EUB+			uMAX;10 pin;3 x 3mm Dwg: 21-0109D (PDF) Use pkgcode/variation: U10E+3*	-40C to +85 C	RoHS/Lead-Free: Yes Materials Analysis
MAX3524EUB+T			uMAX;10 pin; $3 \times 3 \mathrm{~mm}$ Dwg: 21-0109D (PDF) Use pkgcode/variation: U10E+3*	-40C to +85 C	RoHS/Lead-Free: Yes Materials Analysis

[^0]
[^0]: Didn't Find What You Need?

