64 Analog Input Telemetry Controller for Space

Description

The LX7730 is a spacecraft telemetry manager that is radiation-hardened by design and works with either a space FPGA controller such as RTG4, RTAX-S/SL, and RT PolarFire, or a space MCU such as SAMRH71F20, SAMV71Q21RT, and SAM3X8ERT.

The LX7730 contains a 64 universal input multiplexer that can be configured for a mix of differential and/or single ended sensor inputs. The internal programmable current source can be directed to any of the 64 universal inputs. The universal inputs can be acquired by the internal 12-bit ADC at a sample rate up to 13 kHz . The universal inputs also function as variable bi-level inputs with the threshold set by an internal 8 -bit DAC. There is an additional 10-bit current DAC with complementary outputs. Finally, there are 8 fixed threshold bi-level inputs with logic outputs.

The LX7730 is register programmable with 17 addressable 8 -bit registers. Two options are available for communication with the host system controller. First there is an 8 -bit parallel bus with 5 address bits, a parity bit, and a read/write bit that can communicate at a speed of up to $25 \mathrm{Mword} / \mathrm{s}$. The second option is a pair of 12.5Mbit/s SPI interfaces that support redundant communication to two different hosts.

The LX7730 has enable registers that allow most of the device to be shut down to reduce power consumption, and supports cold sparing on its signal pins. The dielectric isolated process is failsafe.

The LX7730LMFQ offers lower guaranteed operating and standby supply currents than the LX7730MFQ, as shown in the Electrical Characteristics. Operation is identical in all other respects. All other references to LX7730 in this data sheet apply to the LX7730LMFQ, LX7730MFQ, and LX7730LMMF.

The LX7730(L)MFQ is packaged in a 132-pin hermetic ceramic quad flat pack. The LX7730LMMF is packaged in a lead-free 208 pin non-hermetic plastic quad flat pack. Both parts operate over a $55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ temperature range, and are radiation tolerant to $100 \mathrm{krad}(\mathrm{Si})$ TID and $50 \mathrm{krad}(\mathrm{Si})$ ELDRs, as well as single event effects.

Features

- 64 channel analog input multiplexer
- Break-Before-Make switching
- 13ksps 12 -bit ADC
- 1% precision 5 V voltage reference
- 3% precision adjustable current source
- Threshold monitoring
- 8 bi-level analog inputs and logic outputs
- 8 additional bi-level inputs from the multiplexer
- 10-bit DAC
- Parallel interface or dual SPI interface
- Radiation tolerant: 100krad(Si) TID, 50krad(Si) ELDRS, SEL immune up to $87 \mathrm{MeV} . \mathrm{cm}^{2} / \mathrm{mg}$ and $125^{\circ} \mathrm{C}$ (fluence of 10^{8} particles $/ \mathrm{cm}^{2}$)

Applications

- Spacecraft health monitoring
- Attitude control
- Payload equipment

Typical Telemetry System

1 CQFP-132 Pin Configuration and Pinout with Recommended Layout

2 Ordering Information

Operating Temperature	Package Type	Package	Part Number	SMD Number	Flow	Shipping Type
$\begin{gathered} -55^{\circ} \mathrm{C} \\ \text { to } \\ 125^{\circ} \mathrm{C} \end{gathered}$	Hermetic Ceramic	$\begin{aligned} & \text { CQFP } \\ & \text { 132L } \end{aligned}$	LX7730MFQ-V	SMD5962-1721901VXC	QML-V	Tray
			LX7730MFQ-Q	SMD5962-1721901QXC	QML-Q	
			LX7730LMFQ-EV	TBD	MIL-PRF-38535 Class V	
			LX7730LMFQ-EQ	TBD	MIL-PRF-38535 Class Q	
	Ceramic		LX7730MFQ-ES	-	Engineering Samples	
	Plastic	$\begin{aligned} & \hline \text { QFP } \\ & 208 \mathrm{~L} \end{aligned}$	LX7730LMMF	-	JEDEC	

3 QFP-208 Pin Configuration and Pinout with Recommended Layout

Note 1. The layout examples show split planes for SGND and MGND. Separate SGND and MGND planes can be used Note 2. Capacitors are shown as II. Resistors are shown as
Note 3. The QFP has many unused pins, shown as un-named pins. These pins are not bonded internally. The layout example connects these pins to one or the other of the ground planes to assist with connectivity
Note 4. The pin marked TEST (CQFP pin 40, QFP pin 64) is a factory test pin which must be left open

64 Analog Input Telemetry Controller for Space

4 CQFP-132-pin Numbering and Pin Descriptions

132L	Name	Pin Type	Pin Function	Description
1	VDD	Power	I/O Supply	Connect to the external logic controller's (FPGA, MCU) I/O power supply (2.25 V to 5.5 V) to set the I/O logic level for all logic I/Os. Bypass close to the pin with a $2.2 \mu \mathrm{~F}$ capacitor to GND
2	CLK	Logic Input (1M Ω to GND)	ADC Clock	Connect a 125 kHz to 500 kHz clock to operate the ADC logic
3	$\begin{gathered} \overline{\mathrm{CE}, \text { or }} \\ \hline \mathrm{SSA} \\ \hline \end{gathered}$	Logic Input (1M Ω to VDD)	Chip Enable Slave Select A	Active low chip enable for the parallel interface ($\overline{\mathrm{SPI}} \mathrm{A}=\overline{\mathrm{SPI}} \mathrm{B}=1$) Active low slave select for SPI channel A interface ($\overline{\overline{S P I} _A}=\overline{0}, \overline{S P I _B}=1$)
4	$\begin{aligned} & \overline{\mathrm{OE}}, \text { or } \\ & \text { CLKA } \end{aligned}$	Logic Input (1M Ω to VDD)	Output Enable Clock A	Active low output enable (read) for the parallel interface (SPI_A = $\overline{\text { SPI_B }}=1$) Clock input for SPI channel A interface ($\overline{\mathrm{SPI} _A}=0, \overline{\mathrm{SPI}} \mathrm{B}=1$)
5	$\begin{aligned} & \hline \overline{\mathrm{WE}}, \text { or } \\ & \text { MOSI_A } \end{aligned}$	Logic Input (1M Ω to VDD)	Write Enable MOSI A	Active low write enable for the parallel interface ($\overline{S P I _A}=\overline{S P I _B}=1$) Data input for SPI channel A interface $\overline{\mathrm{SPI} _A}=0, \overline{\mathrm{SPI} _B}=1$)
6	$\begin{aligned} & \mathrm{AO}, \text { or } \\ & \text { MISO_A } \end{aligned}$	$\begin{gathered} \text { Logic I/O } \\ (1 \mathrm{M} \Omega \text { to GND) } \end{gathered}$	$\begin{gathered} \text { Address A0 } \\ \text { MISO A } \end{gathered}$	Register address bit A0 (LSB) for the parallel interface $\overline{\left(\overline{S P I} _A\right.}=\overline{\mathrm{SPI} B}=1$) Data output for SPI channel A interface ($\overline{\mathrm{SPI} _A}=0, \overline{\mathrm{SPI}} \mathrm{B}=1$)
7	$\frac{\mathrm{A} 1, \mathrm{or}}{\mathrm{SSB}}$	Logic Input (1 M Ω to VDD)	Address A1 Slave Select B	Register address bit A1 for the parallel interface ($\overline{\mathrm{SPI} _A}=\overline{\mathrm{SPI} _}=1$) Active low slave select for SPI channel B interface $(\overline{\mathrm{SPI}} \mathrm{A}=1, \overline{\mathrm{SPI} B}=0$)
8	$\begin{aligned} & \hline \text { A2, or } \\ & \text { CLKB } \end{aligned}$	Logic Input ($1 \mathrm{M} \Omega$ to GND)	Address A2 Clock B	Register address bit A2 for the parallel interface (SPI_A = SPI_B = 1) Clock input for SPI channel B interface $\overline{(\overline{S P I ~ A}}=1, \overline{\mathrm{SPI} B}=0)$
9	$\begin{gathered} \text { A3, or } \\ \text { MOSI_B } \end{gathered}$	Logic Input (1M Ω to GND)	$\begin{aligned} & \text { Address A3 } \\ & \text { MOSI B } \end{aligned}$	Register address bit A3 for the parallel interface ($\overline{\mathrm{SPI} _\mathrm{A}}=\overline{\mathrm{SPI} _B}=1$) Data input for SPI channel B interface ($\overline{\mathrm{SPI} _A}=1, \overline{\mathrm{SPI} _B}=0$)
10	$\begin{gathered} \text { A4, or } \\ \text { MISO_B } \end{gathered}$	$\begin{gathered} \text { Logic } \mathrm{I} / \mathrm{O} \\ (1 \mathrm{M} \Omega \text { to } \mathrm{GND}) \end{gathered}$	$\begin{gathered} \text { Address A4 } \\ \text { MISO B } \end{gathered}$	Register address bit A4 (MSB) for the parallel interface $\overline{\left(\overline{S P I} _A\right.}=\overline{\text { SPI_B }}=1$) Data output for SPI channel B interface $\overline{\text { SPI } A}=1, \overline{\text { SPI } B}=0$)
11	+5V	Power	Internal +5V Supply	Bypass close to the pin with a $1 \mu \mathrm{~F}$ capacitor to GND. Optionally overdrive pin with an external $5.5 \mathrm{~V} \pm 0.25 \mathrm{~V}$ supply which shuts down the internal regulator
12	GND	Ground	Digital and Power Ground	All GND pins 12, 120, and 132 must be used, connected together via a plane or split-plane on the PCB, and used for connection and termination of digital and power external components. Only join GND here at pin 12 to AGND at pin 13 as a star point
13	AGND	Ground	Analog Ground	All AGND pins 13, 33, 41, 52, 67, and 99 must be used, connected together via a plane or split-plane on the PCB, and used for termination of analog signals only. Only join AGND here at pin 13 to GND at pin 12 as a star point
14-21	D0-D7	Logic I/O ($1 \mathrm{M} \Omega$ to GND)	Data Bus	Data bus D0 (LSB) to D7 (MSB) for the parallel interface
22	PTY	$\begin{gathered} \text { Logic } \mathrm{I} / \mathrm{O} \\ (1 \mathrm{M} \Omega \text { to } \mathrm{GND}) \\ \hline \end{gathered}$	Data Bus Parity	Even parity bit for the parallel interface combined address (A0 - A4), data (D0 D7) bits, and the PTY signal. A write parity error sets the $\overline{\text { ACK output high }}$
23	$\overline{\text { ACK }}$	Logic Output	Data Bus Write Acknowledge	Data write acknowledge output for the serial and parallel interfaces. $\overline{\mathrm{ACK}}$ is active low to validate data (indicate no parity error) for serial or parallel writes to LX7730
24	RESET	Logic I/O	System Reset	Active low input resets the LX7730 internal settings to the POR state. An optional capacitor to GND extends the internal reset time
25-28	$\begin{gathered} \hline \text { BLO1 - } \\ \text { BLO4 } \end{gathered}$	Logic Outputs	Bi-Level Outputs 1 to 4	Output of fixed threshold bi-level monitor (comparator) input BLI1, BLI2, BLI3 and BLI4 at pins $51,50,49$, and 48 respectively
29	BLO5	Logic Output	$\begin{aligned} & \text { Bi-Level Output } \\ & 5 \end{aligned}$	Output of fixed threshold bi-level monitor (comparator) input BLI5 at pin 47 When the LX7730 is in reset state (either RESET pin 24 held active low, or Master Reset register 0 contains $0 \times 6 \mathrm{~A}$) then output is instead VCC LVD status, Power Status Register 2 bit D2 (Table 18 on page 33)
30	BLO6	Logic Output	$\begin{aligned} & \text { Bi-Level Output } \\ & 6 \end{aligned}$	Output of fixed threshold bi-level monitor (comparator) input BLI6 at pin 46 When the LX7730 is in reset state (either RESET pin 24 held active low, or Master Reset register 0 contains $0 \times 6 A$) then output is instead VEE LVD status, Power Status Register 2 bit D1 (Table 18 on page 33)
31	BLO7	Logic Output	Bi-Level Output 7	Output of fixed threshold bi-level monitor (comparator) input BLI7 at pin 45 When the LX7730 is in reset state (either RESET pin 24 held active low, or Master Reset register 0 contains $0 \times 6 \mathrm{~A}$) then output is instead +5 V LVD status, Power Status Register 2 bit D0 (Table 18 on page 33)
32	BLO8	Logic Output	Bi-Level Output 8	Output of fixed threshold bi-level monitor (comparator) input BLI8 at pin 44 When the LX7730 is in reset state (either RESET pin 24 held active low, or Master Reset register 0 contains 0×6 A) then output is instead Power On Enable status, which is high when the internal logic is ready after power-up
33	AGND	Ground	Analog Ground	All AGND pins 13, 33, 41, 52, 67, and 99 must be used, connected together via a plane or split-plane on the PCB, and used for termination of analog signals only. Only join AGND to GND at pins 12 and 13

132L	Name	Pin Type	Pin Function	Description
34	IREF1	Analog Input	Current Reference Bias Resistor	Connect a $20 \mathrm{k} \Omega \pm 1 \%$ resistor from IREF1 to AGND pin 33 to set the internal reference current. Minimize the track length from the resistor to pin 34, and route a direct track to AGND pin 33. The voltage at IREF1 is 1.6 V
35	$\begin{aligned} & \text { ADC_-_N } \end{aligned}$	Analog Input	ADC Bias Resistor	Connect a $7.87 \mathrm{k} \Omega, \pm 0.1 \%$ resistor from ADC_BIAS_IN to AGND pin 33 to set the internal precision current reference for the ADC. Minimize the track length to pin 35, and route a direct track to AGND pin 33. The voltage at ADC_BIAS_IN is 1.6 V
36	VREF	Analog I/O	Internal VREF Output External VREF Input	To use the internal $+5 \mathrm{~V} \pm 1 \%$ reference voltage, connect a $1 \mu \mathrm{~F}$ capacitor from VREF to AGND pin 33 and tie EXT_REF pin 127 to +5 V . To use an external reference voltage up to 5.5 V , connect the external reference to VREF, and tie EXT_REF pin 127 to either GND or AGND
37	DAC_P	Analog Output	10-Bit Current DAC (+) Output	Positive output for the 10-bit current DAC. The code range 0×000 to 0×3 FF in the 10-bit DAC registers 14 and 15 (Table 30 on page 46) sources an increasing output current from 0 to 2 mA . Terminate DAC_P with a resistor $\leq 1.5 \mathrm{k} \Omega$ to AGND to develop a nominal output voltage $\leq 3 \overline{\mathrm{~V}}$ maximum at code 0x3FF. To assign the DAC_P output alternatively to internal use as the current source for the analog input multiplexer, set Current Mux Level register 5 bit D7 $=0$ (Table 21 on page 38) and leave DAC_P open
38	DAC_N	Analog Output	10-Bit Current DAC (-) Output	Negative output for the 10 -bit current DAC. The code range 0×000 to 0×3 FF in the 10-bit DAC registers 14 and 15 (Table 30 on page 46) sources a decreasing output current from 2 to 0 mA . Terminate DAC_N with a resistor $\leq 1.5 \mathrm{k} \Omega$ to AGND to develop a nominal output voltage $\leq 3 \mathrm{~V}$ maximum at code 0x000. If the 10-bit DAC is to be assigned to internal use as the current source for the analog input multiplexer (Current Mux Level register 5 bit D7 = 0), terminate DAC_N to either GND or AGND
39	ADC_IN	Analog I/O	AFE Output ADC Input	Optionally connect a redundant ADC here to monitor the final output from the complete AFE multiplexer-gain-filter system. Alternatively, to assert a unipolar input signal with 0 to 2 V range directly to the ADC, disable the AFE by setting ADC Control register bit D0 $=1$ (Table 24 on page 40)
40	TEST	Factory Use	Test	Internally bonded test node. Leave this pin floating
41	AGND	Ground	Analog Ground	All AGND pins 13, 33, 41, 52, 67, and 99 must be used, connected together via a plane or split-plane on the PCB, and used for termination of analog signals only. Only join AGND to GND at pins 12 and 13
42	ADC DAC OUT	Analog Input	DAC bias resistor	Connect a $158 \Omega, \pm 0.1 \%$ resistor from ADC_DAC_OUT to AGND pin 41 to provide the precision load for the ADC's current output DAC. Minimize the track length to pin 42, and route a direct track to AGND pin 41. The voltage at ADC_DAC_OUT ranges from 1 V minimum to 2 V maximum during an ADC conversion, and returns to 0 V at the end of the conversion
43	BL_TH	Analog Input	Bi-Level (-) external threshold input	Optional external negative (-) threshold voltage for the fixed threshold bi-level monitors (comparators) BL1 to BLI8 To use an external reference voltage between 0.1 V and 4.9 V on BL _TH, set bit B7 in the Bi-Level Bank register 12 (Table 28 on page 44) To use the internal $2.5 \mathrm{~V} \pm 50 \mathrm{mV}$ threshold, clear bit B7 in the Bi-Level Bank register 12, and connect the BL TH pin to either GND or AGND
44-51	$\begin{gathered} \text { BLI8 } \\ \text { BLI1 } \end{gathered}$	Analog Inputs	Bi-Level (+) inputs 8 to 1	Fixed threshold bi-level monitor (comparator) positive (+) inputs 8 to 1 which are compared against either an internal $2.5 \mathrm{~V} \pm 50 \mathrm{mV}$ threshold, or an external voltage between 0.1 V and 4.9 V on the BL_TH pin 43
52	AGND	Ground	Analog Ground	All AGND pins 13, 33, 41, 52, 67, and 99 must be used, connected together via a plane or split-plane on the PCB, and used for termination of analog signals only. Only join AGND to GND at pins 12 and 13
53-66	$\begin{aligned} & \mathrm{CH} 1- \\ & \mathrm{CH} 14 \end{aligned}$	Analog I/Os	ADC Inputs, Current Source	Sensor/signal acquisition inputs up to $\pm 10 \mathrm{~V}$, selectable current source output
67	AGND	Ground	Analog Ground	All AGND pins 13, 33, 41, 52, 67, and 99 must be used, connected together via a plane or split-plane on the PCB, and used for termination of analog signals only. Only join AGND to GND at pins 12 and 13
68-98	$\begin{gathered} \mathrm{CH} 15- \\ \mathrm{CH} 45 \end{gathered}$	Analog I/Os	ADC Inputs, Current Source	Sensor/signal acquisition inputs up to $\pm 10 \mathrm{~V}$, selectable current source output
99	AGND	Ground	Analog Ground	All AGND pins 13, 33, 41, 52, 67, and 99 must be used, connected together via a plane or split-plane on the PCB, and used for termination of analog signals only. Only join AGND to GND at pins 12 and 13
100-118	$\begin{gathered} \hline \mathrm{CH} 46- \\ \mathrm{CH} 64 \end{gathered}$	Analog I/Os	ADC Inputs, Current Source	Sensor/signal acquisition inputs up to $\pm 10 \mathrm{~V}$, selectable current source output

64 Analog Input Telemetry Controller for Space

132L	Name	Pin Type	Pin Function	Description
119	SE_RTN	Analog Input	Sensor Return	Common return for single ended sensor/signal inputs. Typically connected to AGND, or a remote signal ground in the range $\pm 10 \mathrm{~V}$ for differential sensor/signal inputs. Tie to AGND if unused
120	GND	Ground	Digital and Power Ground	All GND pins 12, 120, and 132 must be used, connected together via a plane or split-plane on the PCB, and used for connection and termination of digital and power external components. Only join GND to AGND at pins 12 and 13
121	VCC	Power	Input Supply	Connect to the main power supply (11.4V to 16 V). Bypass close to the pin with a $4.7 \mu \mathrm{~F}$ capacitor to GND
122	PCP	Output	Charge Pump Flying Capacitor noninverting	Flying capacitor positive node for the internal VEE inverting charge pump. If the internal VEE charge pump is used (EXT_VEE pin 126 tied to +5 V), connect a $0.47 \mu \mathrm{~F}$ capacitor between this pin and the NCP pin. PCP swings between GND and VCC. If an external VEE supply is used (EXT_VEE pin 126 tied to either GND or AGND), leave PCP open
123	NCP	Output	Charge Pump Flying Capacitor inverting	Flying capacitor negative node for the internal VEE inverting charge pump. If the internal VEE charge pump is used (EXT_VEE pin 126 tied to +5 V), connect a $0.47 \mu \mathrm{~F}$ capacitor between this pin and the PCP pin. NCP swings between GND and VEE. If an external VEE supply is used ($\overline{E X T}$ _VEE pin 126 tied to either GND or AGND), leave NCP open
124	VEE	Power	$\begin{gathered} -10 \mathrm{~V} \text { to }-16 \mathrm{~V} \\ \text { Supply } \end{gathered}$	If the internal inverting charge pump is used to generate VEE (EXT_VEE pin 126 tied to +5 V), bypass close to the pin with a $2.2 \mu \mathrm{~F}$ capacitor to GND (not AGND) If an external VEE supply is used ($\overline{E X T}$ VEE pin 126 tied to GND), connect to an external voltage in the range -10 V to -16 V , and bypass close to the pin with a $2.2 \mu \mathrm{~F}$ capacitor to either GND or AGND
125	-2V	Power	$\begin{gathered} \text { Internal -2V } \\ \text { Supply } \\ \hline \end{gathered}$	Bypass close to the pin with a $1 \mu \mathrm{~F}$ capacitor to GND
126	EXT_VEE	Logic Input ($1 \mathrm{M} \Omega$ to +5 V)	VEE Select	To use the internal inverting charge pump to generate VEE, tie EXT_VEE to +5 V . To use an external negative supply on VEE pin 124, tie EXT_VEE to either GND or AGND
127	EXT_REF	Logic Input ($1 \mathrm{M} \Omega$ to +5 V)	VREF Select	To use the internal $+5 \mathrm{~V} \pm 1 \%$ reference voltage, tie EXT_REF to +5 V . To use an external reference voltage on VREF pin 36, tie EXT_ REF to either GND or AGND
128	TEST MODE	Factory Use	Test	Internally bonded test node. Connect to either GND or AGND
129	$\begin{aligned} & \text { PROG } \\ & \text { SUPPLY } \end{aligned}$	Factory Use	Test	Internally bonded test node. Connect to +5 V pin 11
130	$\overline{\text { SPI_A }}$	Logic Input ($1 \mathrm{M} \Omega$ to VDD)	SPI Interface A Enable	A falling edge on the $\overline{\text { SPI_A }}$ input selects the SPI channel A interface and deselects both the parallel interface and the SPI channel B interface. The SPI channel A interface remains selected while active low, or until a falling edge on the $\overline{\text { SPI B B input over-rides and selects the SPI channel B interface instead. }}$ Select the parallel interface instead of one of the SPI channels by taking both the SPI_A and SPI_B inputs high
131	$\overline{\text { SPI_B }}$	Logic Input ($1 \mathrm{M} \Omega$ to VDD)	SPI Interface B	A falling edge on the SPI_B input selects the SPI channel B interface and deselects both the parallel interface and the SPI channel A interface. The SPI channel B interface remains selected while active low, or until a falling edge on the SPI_A input over-rides and selects the SPI channel A interface instead. Select the parallel interface instead of one of the SPI channels by taking both the SPI_A and SPI_B inputs high
132	GND	Ground	Digital and Power Ground	All GND pins 12, 120, and 132 must be used, connected together via a plane or split-plane on the PCB, and used for connection and termination of digital and power external components. Only join GND to AGND at pins 12 and 13

5 QFP-208 Pin Numbering and Pin Descriptions

$\left.\begin{array}{|c|c|c|c|l|}\hline 208 L & \text { Name } & \text { Pin Type } & \text { Pin Function } & \\ \hline 3 & \text { VDD } & \text { Power } & \text { I/O Supply } & \begin{array}{l}\text { Connect to the external logic controller's (FPGA, MCU) I/O power supply } \\ (2.25 V ~ t o ~ 5.5 V) ~ t o ~ s e t ~ t h e ~ I / O ~ l o g i c ~ l e v e l ~ f o r ~ a l l ~ l o g i c ~ I / O s . ~ B y p a s s ~ c l o s e ~ t o ~ t h e ~\end{array} \\ \text { pin with a } 2.2 \mu \mathrm{~F} \text { capacitor to GND }\end{array}\right]$

64 Analog Input Telemetry Controller for Space

208L	Name	Pin Type	Pin Function	Description
55	IREF1	Analog Input	Current Reference Bias Resistor	Connect a $20 \mathrm{k} \Omega \pm 1 \%$ resistor from IREF1 to AGND pin 51 to set the internal reference current. Minimize the track length from the resistor to pin 55, and route a direct track to AGND pin 51. The voltage at IREF1 is 1.6 V
56	$\begin{aligned} & \text { ADC } \\ & \text { BIAS_IN } \end{aligned}$	Analog Input	ADC Bias Resistor	Connect a $7.87 \mathrm{k} \Omega, \pm 0.1 \%$ resistor from ADC_BIAS_IN to AGND pin 51 to set the internal precision current reference for the ADC. Minimize the track length to pin 56 , and route a direct track to AGND pin 51. The voltage at ADC BIAS IN is 1.6 V
58	VREF	Analog I/O	\qquad	To use the internal $+5 \mathrm{~V} \pm 1 \%$ reference voltage, connect a $1 \mu \mathrm{~F}$ capacitor from VREF to AGND pin 51 and tie EXT_REF pin 199 to +5 V. To use an external reference voltage up to 5.5 V , connect the external reference to VREF, and tie EXT_REF pin 199 to either GND or AGND
59	DAC_P	Analog Output	10-Bit Current DAC (+) Output	Positive output for the 10 -bit current DAC. The code range 0×000 to 0×3 FF in the 10-bit DAC registers 14 and 15 (Table 30 on page 46) sources an increasing output current from 0 to 2 mA . Terminate DAC_P with a resistor $\leq 1.5 \mathrm{k} \Omega$ to AGND to develop a nominal output voltage $\leq 3 \overline{\mathrm{~V}}$ maximum at code $0 \times 3 F F$. To assign the DAC_P output alternatively to internal use as the current source for the analog input multiplexer, set Current Mux Level register 5 bit D7 $=0$ (Table 21 on page 38) and leave DAC P open
61	DAC_N	Analog Output	10-Bit Current DAC (-) Output	Negative output for the 10 -bit current DAC. The code range 0×000 to 0×3 FF in the 10-bit DAC registers 14 and 15 (Table 30 on page 46) sources a decreasing output current from 2 to 0 mA . Terminate DAC_N with a resistor $\leq 1.5 \mathrm{k} \Omega$ to AGND to develop a nominal output voltage $\leq 3 \mathrm{~V}$ maximum at code 0×000. If the 10-bit DAC is to be assigned to internal use as the current source for the analog input multiplexer (Current Mux Level register 5 bit D7 $=0$), terminate DAC_N to either GND or AGND
62	ADC_IN	Analog I/O	AFE Output ADC Input	Optionally connect a redundant ADC here to monitor the final output from the complete AFE multiplexer-gain-filter system. Alternatively, to assert a unipolar input signal with 0 to 2 V range directly to the ADC, disable the AFE by setting ADC Control register bit DO $=1$ (Table 24 on page 40)
64	TEST	Factory Use	Test	Internally bonded test node. Leave this pin floating
65	AGND	Ground	Analog Ground	All AGND pins $23,51,65,82,107$, and 155 must be used, connected together via a plane or split-plane on the PCB, and used for termination of analog signals only. Only join AGND to GND at pins 21 and 23
67	ADC_ DAC OUT	Analog Input	DAC bias resistor	Connect a $158 \Omega, \pm 0.1 \%$ resistor from ADC_ DAC_OUT to AGND pin 65 to provide the precision load for the ADC's current output DAC. Minimize the track length to pin 67, and route a direct track to AGND pin 65 . The voltage at ADC_DAC_OUT ranges from 1 V minimum to 2 V maximum during an ADC conversion, and returns to 0 V at the end of the conversion
69	BL_TH	Analog Input	Bi-Level (-) external threshold input	Optional external negative (-) threshold voltage for the fixed threshold bi-level monitors (comparators) BL1 to BLI8 To use an external reference voltage between 0.1 V and 4.9 V on BL _TH, set bit B7 in the Bi-Level Bank register 12 (Table 28 on page 44) To use the internal $2.5 \mathrm{~V} \pm 50 \mathrm{mV}$ threshold, clear bit B7 in the Bi-Level Bank register 12, and connect the BL_TH pin to either GND or AGND
$\begin{aligned} & 70,72, \\ & 73,75, \\ & 76,78, \\ & 79,81 \end{aligned}$	$\begin{gathered} \text { BLI8- } \\ \text { BLI1 } \end{gathered}$	Analog Inputs	Bi-Level (+) inputs 8 to 1	Fixed threshold bi-level monitor (comparator) positive (+) inputs 8 to 1 which are compared against either an internal $2.5 \mathrm{~V} \pm 50 \mathrm{mV}$ threshold, or an external voltage between 0.1 V and 4.9 V on the BL_TH pin 69
82	AGND	Ground	Analog Ground	All AGND pins $23,51,65,82,107$, and 155 must be used, connected together via a plane or split-plane on the PCB, and used for termination of analog signals only. Only join AGND to GND at pins 21 and 23
$\begin{aligned} & \text { 84, 85, } \\ & 87,88, \\ & 90,91, \\ & 93,94, \\ & 96,97, \\ & 99,100, \\ & 102,103 \end{aligned}$	$\begin{aligned} & \mathrm{CH} 1- \\ & \mathrm{CH} 14 \end{aligned}$	Analog I/Os	ADC Inputs, Current Source	Sensor/signal acquisition inputs up to $\pm 10 \mathrm{~V}$, selectable current source output
107	AGND	Ground	Analog Ground	All AGND pins $23,51,65,82,107$, and 155 must be used, connected together via a plane or split-plane on the PCB, and used for termination of analog signals only. Only join AGND to GND at pins 21 and 23

208L	Name	Pin Type	Pin Function	Description
109, 110, 112, 113, 115,116, 118,119, 121,122, 124,125, 127,128, 130,131, 133,134, 136,137, 139,140, 142,143, 145,146, 148,149, 151,152, 154	$\begin{gathered} \mathrm{CH} 15- \\ \mathrm{CH} 45 \end{gathered}$	Analog I/Os	ADC Inputs, Current Source	Sensor/signal acquisition inputs up to $\pm 10 \mathrm{~V}$, selectable current source output
155	AGND	Ground	Analog Ground	All AGND pins 23, 51, 65, 82, 107, and 155 must be used, connected together via a plane or split-plane on the PCB, and used for termination of analog signals only. Only join AGND to GND at pins 21 and 23
$\begin{gathered} \hline 158,159, \\ 161,162, \\ 164,165, \\ 167,168, \\ 170,171, \\ 173,174, \\ 176,177, \\ 178,179, \\ 181,182, \\ 183 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{CH} 46- \\ \mathrm{CH} 64 \end{gathered}$	Analog I/Os	ADC Inputs, Current Source	Sensor/signal acquisition inputs up to $\pm 10 \mathrm{~V}$, selectable current source output
184	SE_RTN	Analog Input	Sensor Return	Common return for single ended sensor/signal inputs. Typically connected to AGND, or a remote signal ground in the range $\pm 10 \mathrm{~V}$ for differential sensor/signal inputs. Tie to AGND if unused
186	GND	Ground	Digital and Power Ground	All GND pins 21, 186, and 206 must be used, connected together via a plane or split-plane on the PCB, and used for connection and termination of digital and power external components. Only join GND to AGND at pins 21 and 23
187	VCC	Power	Input Supply	Connect to the main power supply (11.4V to 16 V). Bypass close to the pin with a $4.7 \mu \mathrm{~F}$ capacitor to GND
188	PCP	Output	Charge Pump Flying Capacitor noninverting	Flying capacitor positive node for the internal VEE inverting charge pump. If the internal VEE charge pump is used (EXT_VEE pin 197 tied to +5 V), connect a $0.47 \mu \mathrm{~F}$ capacitor between this pin and the NCP pin. PCP swings between GND and VCC. If an external VEE supply is used ($\overline{E X T}$ _VEE pin 197 tied to either GND or AGND), leave PCP open
190	NCP	Output	Charge Pump Flying Capacitor inverting	Flying capacitor negative node for the internal VEE inverting charge pump. If the internal VEE charge pump is used (EXT_VEE pin 197 tied to +5 V), connect a $0.47 \mu \mathrm{~F}$ capacitor between this pin and the PCP pin. NCP swings between GND and VEE. If an external VEE supply is used ($\overline{E X T}$ VEE pin 197 tied to either GND or AGND), leave NCP open
191	VEE	Power	$\begin{gathered} -10 \mathrm{~V} \text { to }-16 \mathrm{~V} \\ \text { Supply } \end{gathered}$	If the internal inverting charge pump is used to generate VEE (EXT_VEE pin 197 tied to +5 V), bypass close to the pin with a $2.2 \mu \mathrm{~F}$ capacitor to GND (not AGND) If an external VEE supply is used (EXT_VEE pin 197 tied to GND), connect to an external voltage in the range -10 V to -16 V , and bypass close to the pin with a $2.2 \mu \mathrm{~F}$ capacitor to either GND or AGND
192	-2V	Power	Internal -2V Supply	Bypass close to the pin with a $1 \mu \mathrm{~F}$ capacitor to GND
197	EXT_VEE	Logic Input ($1 \mathrm{M} \Omega$ to +5 V)	VEE Select	To use the internal inverting charge pump to generate VEE, tie EXT_VEE to +5 V . To use an external negative supply on VEE pin 191, tie $\overline{\text { EXT_VEE }}$ to either GND or AGND
199	$\overline{\text { EXT_REF }}$	Logic Input ($1 \mathrm{M} \Omega$ to +5 V)	VREF Select	To use the internal $+5 \mathrm{~V} \pm 1 \%$ reference voltage, tie $\overline{\mathrm{EXT}} \overline{\mathrm{REF}}$ to +5 V . To use an external reference voltage on VREF pin 58, tie EXT_ $\overline{\text { REF }}$ to either GND or AGND

64 Analog Input Telemetry Controller for Space

208L	Name	Pin Type	Pin Function	Description
200	$\begin{aligned} & \hline \text { TEST } \\ & \text { MODE } \end{aligned}$	Factory Use	Test	Internally bonded test node. Connect to either GND or AGND
202	$\begin{aligned} & \text { PROG } \\ & \text { SUPPLY } \end{aligned}$	Factory Use	Test	Internally bonded test node. Connect to +5 V pin 11
203	$\overline{\text { SPI_A }}$	Logic Input ($1 \mathrm{M} \Omega$ to VDD)	SPI Interface A Enable	A falling edge on the $\overline{\text { SPI_A }}$ input selects the SPI channel A interface and deselects both the parallel interface and the SPI channel B interface. The SPI channel A interface remains selected while active low, or until a falling edge on the SPI_B input over-rides and selects the SPI channel B interface instead. Select the parallel interface instead of one of the SPI channels by taking both the $\overline{\mathrm{SPI} A}$ and $\overline{\mathrm{SPI} \mathrm{B}}$ inputs high
205	$\overline{\text { SPI_B }}$	Logic Input (1M Ω to VDD)	SPI Interface B Enable	A falling edge on the $\overline{\text { SPI_B }}$ input selects the SPI channel B interface and deselects both the parallel interface and the SPI channel A interface. The SPI channel B interface remains selected while active low, or until a falling edge on the SPI_A input over-rides and selects the SPI channel A interface instead. Select the parallel interface instead of one of the SPI channels by taking both the $\overline{\mathrm{SPI} A}$ and $\overline{\mathrm{SPI} \mathrm{B}}$ inputs high
206	GND	Ground	Digital and Power Ground	All GND pins 21, 186, and 206 must be used, connected together via a plane or split-plane on the PCB, and used for connection and termination of digital and power external components. Only join GND to AGND at pins 21 and 23

Note: Pin numbers not shown in the table above are not bonded internally.

6 Absolute Maximum Ratings

Note: Stresses above those listed in "ABSOLUTE MAXIMUM RATINGS", may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Parameter	Min	Max	Units
Main Power (VCC) to GND	-0.5	20	V
Logic Supply Voltage (VDD) to GND	-0.5	7	V
+5V (current internally limited)	-0.5	7	V
VEE (current internally limited)	-20	-0.5	7
FPGA or MCU system controller interface (pins 2 - pin 32) to GND	-20	20	V
Sensor Inputs (CH1 - CH64, SE_RTN) to GND (VCC = GND)	-20	$\mathrm{VCC}+2.5 \mathrm{~V}$	V
Sensor Inputs (CH1 - CH64, SE_RTN) to GND (VCC =11.4V to 16V)	-10	10	V
Bi-Level Inputs (BLI1 to 8) to GND	-0.5	7	mA
Input clamp currents	-55	150	V
ADC_IN, DAC_N, DAC_P, RESET, VREF, BL_TH, IREF1 to GND	-65	160	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature		1000	V
Storage Junction Temperature		500	V
ESD Susceptibility (HBM, ML_STD883, Method 3015.7) Host system controller interface pins 2 to 10, 14 to 32, 126 to 128, 130, 131 Power pins 1, 11, 121 to 125, 129 ESD Susceptibility (HBM, ML_STD883, Method 3015.7) Analog channel inputs CH1 to CH64 and BLI1 to BLI8 bi-level inputs Peak Lead Solder Temperature (10 seconds)			

7 Operating Ratings

Note: Performance is generally guaranteed over this range as further detailed below under Electrical Characteristics.

Parameter	Min	Max	Units
VCC	11.4	16	V
VDD	2.25	5.5	V
VEE (when externally applied)	-16	-10	V
+5V (current internally limited)	4.5	5.5	V
FPGA or MCU system controller Interface to GND	0	5.5	V
Sensor Inputs (CH1 - CH64, SE_RTN) to GND	-10	10	V
Bi-Level Inputs (BLI1 to BLI8) to GND	0	8	V
Input Clamp Currents		Fault condition ≤ 3	mA
ADC_IN, DAC_N, DAC_P, RESET, VREF, BL_TH, IREF1 to GND	0	5.5	V
Current from Reference Voltage (VREF pin)	0	10	mA

8 Thermal Properties

Note: The θ_{Jc} numbers assume no forced airflow. Junction temperature is calculated using $\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{C}}+\left(\mathrm{PD} \times \theta_{\mathrm{Jc}}\right)$. In particular, θ_{Jc} is a function of the PCB construction. The stated number below is for a four-layer board in accordance with JESD-51 (JEDEC).

Package	Thermal Resistance	Typ	Units
CQFP-132	θ_{Jc}	10	\multirow{7}\mathrm{C}$/ \mathrm{W}$
		6.5	
QFP-208			

9 Heatsink Recommendations

The top or the base of the plastic package can be used as the heat conducting surface. It is recommended to use the base of the ceramic package as the surface for conducting heat from the package. The metal package top is attached to the package body at the top of relatively thin cavity walls, and so has a much higher thermal resistance from the die than the base of the package. The leads can be formed to mount the part upside down if necessary. It is recommended to apply a thermal interface material between either package and its heat dissipater. The heat dissipater can be copper layers within a multilayer circuit board to spread heat laterally across the board, or a direct mounted dissipation element.

10 Electrical Characteristics

The following specifications apply over the operating ambient temperature of $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$ except where otherwise noted with the following test conditions: $\mathrm{VCC}=15 \mathrm{~V}, \mathrm{VDD}=3.3 \mathrm{~V} ; \mathrm{R}_{\text {IREF }}=20 \mathrm{k} \Omega \pm 1 \% ; \mathrm{RADC}_{-\mathrm{BIAS} _I \mathrm{~N}}=7.87 \mathrm{k} \Omega \pm 0.1 \%$; Radc_DAc_out $=158 \Omega \pm 0.1 \%$; EXT_VEE open, EXT_REF open; CH 1 and CH 2 are selected with CH 2 grounded; CLK = 500 kHz . Register $7=\mathrm{b}^{\prime} 001010 \mathrm{xx}$ setting 10 kHz anti-alias filtering. Typical parameters refer to $\mathrm{T}_{j}=25^{\circ} \mathrm{C}$. Positive currents flow into pins. Specifications apply to both LX7730 and LX7730L unless otherwise stated.

Symbol	Parameter	Test Conditions/Comments	Min	Typ	Max	Units	
Internally Regulated Voltages							
$\mathrm{V}_{\text {VEE }}$	VEE voltage	VCC - \|VEE		1.5	2.6	3	V
$\mathrm{V}_{+5 \mathrm{~V} \text { _NOM }}$	+5V voltage		4.75	5.00	5.25	V	
$V_{\text {REF_NOM }}$	VREF voltage		4.95	5.00	5.05	V	
VIREF	IREF pin voltage	$\mathrm{R}_{\text {IREF }}=20 \mathrm{k} \Omega$	1.568	1.600	1.632	V	
Analog MUX							
$\mathrm{V}_{\text {CH\# diFF }}$	Differential Range	CH\# to CH\#, or CH\# to SE_RTN	0		5	V	
$\mathrm{V}_{\text {СН\#_ }}$ сомм	Common Mode Range	With $\mathrm{V}_{\mathrm{CH} 1}-\mathrm{V}_{\mathrm{CH} 2}=5 \mathrm{~V}$	-5		5	V	
VCH\#_CLP_P	Voltage Clamp (power applied)	Clamp Current $=1 \mathrm{~mA}$ (into pin) ${ }^{(1)}$	VCC	16	17	V	
		Clamp Current $=1 \mathrm{~mA}$ (out of pin)	-23	-20	-16		
$\mathrm{V}_{\text {CH\#_CLP }}$	Voltage Clamp (VCC=VEE = 0)	Clamp Current $=1 \mathrm{~mA}$ (into pin)	16	20	23	V	
		Clamp Current $=1 \mathrm{~mA}$ (out of pin)	-23	-20	-16		
All to $\mathrm{V}_{\mathrm{CH} 1}$	CH\# to CH\# Isolation	CH1 and SE_RTN selected; CH2 to CH64 each with series $2 \mathrm{k} \Omega$ to a 10 kHz common source, CH 1 with $2 \mathrm{k} \Omega$ to GND. SE_RTN to GND		60		dB	
$\mathrm{V}_{\text {ADC_IN }}$	Settling Time	Including dead time			10	$\mu \mathrm{s}$	
ICH\#_ BIAS	Bias Current	$\mathrm{VCH} 1=-5 \mathrm{~V}$ to 5 V	-200	0	200	nA	
$\mathrm{I}_{\text {CH\# LEAK }}$	Leakage Current	$\mathrm{VCH} 1=-5 \mathrm{~V}$ to 5V ; IC powered off	-200	0	200	nA	
ISE_RTN	Bias Current	VSE_RTN $=-5 \mathrm{~V}$ to 5V	-200	0	200	nA	
ISE_RTN	Leakage Current	VSE_RTN= -5 V to 5V; IC powered off	-200	0	200	nA	
Programmable Current Source							
$\mathrm{ICH} \mathrm{\#}_{\text {\# FSC }}$	Full scale current	Register 5 Use_IDAC bit D7 = 0, Register 5 Double bit D3 $=0$	1880	1940	2000	$\mu \mathrm{A}$	
$\mathrm{ICH} \mathrm{\#}^{\text {an }}$	Integral nonlinearity		-7.5	0	7.5		
ICH\#_D	Differential nonlinearity		-7.5	0	7.5		
ICH\#_FSC_DW	Full scale current	Register 5 Use_IDAC bit D7 = 0, Register 5 Double bit D3 $=1$	3710	3830	3950		
ICH\#_IN_DW	Integral nonlinearity		-15	0	15		
ICH\#_DN_DW	Differential nonlinearity		-15	0	15		
$\mathrm{ICH} \mathrm{\#}_{\text {CDAC31 }}$	10-bit DAC = code 31	Register 5 Use_IDAC bit D7 = 1	290	300	310		
ICH\#_IN_DAC	Integral nonlinearity 10-bit DAC codes 0 to 31	Register 5 Use_IDAC bit D7 = 1 Using \{DAC_D9 : DAC_D0\} codes in the Register 14 \& 15 set from b'00000000 00' to b'00000111 11' (0 to 31)	-2	0	2		
ICH\#_DN_DAC	Differential nonlinearity 10-bit DAC codes 0 to 31		-2	0	2		
Adjustable threshold Bi-Level MUX and 8-Bit DAC							
VDAC8_max	Threshold DAC Max Output	Using code value of 255/255	4.95	5.00	5.05	V	
V ${ }_{\text {DAC8_LSB }}$	Threshold DAC LSB Weight			19.5		mV	
V ${ }_{\text {DAC8_IL }}$	DAC Integral Linearity	Using codes 20 to 240, best fit straight line	-1		1	LSB	
V $\mathrm{DACB}^{\text {a }}$ OFF	Offset error		-10		10	mV	
VDAC8_DL	DAC Differential Linearity		-0.75		0.75	LSB	
VCMP\#_HYS	Hysteresis	$\begin{aligned} & \text { Rising threshold = DAC output } \\ & \text { Falling threshold = (DAC output } \left.-\mathrm{V}_{\mathrm{CMP}} \text { HYS }\right) \end{aligned}$	75	112	150	mV	
10-Bit Current DAC							
IDAC10_PFS	DAC_P output full scale		-2.06	-2.00	-1.94	mA	
IDAC10_NFS	DAC_N output full scale			0		mA	
IDAC10_LSB	LSB Weight			-1.953		$\mu \mathrm{A}$	
IDAC10_N	Integral Nonlinearity		-5	0	5	LSB	
$\mathrm{I}_{\text {DAC_D }}$	Differential Nonlinearity		-0.5	0	0.5	LSB	
V ${ }_{\text {DAC10_PN }}$	Compliance Range		0		3	V	
T ${ }_{\text {DAC10_SET }}$	Settling			0.2	1	$\mu \mathrm{s}$	

Symbol	Parameter	Test Conditions/Comments	Min	Typ	Max	Units
Instrumentation Amplifier with gain control (measured at ADC_IN)						
$\mathrm{V}_{\text {IA_OFFSET }}$	Calculated by interpolation	Register 7 = b'00101000' (gain = 0.4, 10kHz); referenced to input; $-55^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$	-2	13	25	mV
		Register $7=$ b'00101000' (gain $=0.4,10 \mathrm{kHz}$); referenced to input; $125^{\circ} \mathrm{C}$	-2	13	30	
		Register $7=$ b'00101001' (gain $=2,10 \mathrm{kHz}$); referenced to input; $-55^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$	-3	0	3	
		Register 7 = b'00101001' (gain = 2, 10kHz); referenced to input $; 125^{\circ} \mathrm{C}$	-3	0	4	
		Register 7 = b'00101010' (gain = 10, 10kHz); referenced to input; $-55^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$	-3	0	3	
		Register 7 = b'00101010' (gain = 10, 10kHz); referenced to input; $125^{\circ} \mathrm{C}$	-3	0	3	
$\mathrm{V}_{\text {IA_GAIN }}$	$\text { Gain }=\frac{V o 2-V o 1}{V i 2-V i 1}$	Register 7 = b'00101000' (gain $=0.4,10 \mathrm{kHz}$)	0.398	0.400	0.402	$\frac{\text { Vout }}{\text { Vin }}$
		Register 7 = b'00101001' (gain $=2,10 \mathrm{kHz}$)	1.992	1.998	2.004	
		Register 7 = b'00101010' (gain $=10,10 \mathrm{kHz}$)	9.965	9.995	10.025	
TIA_RISE	Output Step Rise Time 10% to 90%; Vo $=2 \mathrm{Vpp}$	Register 7 = b'00101000' (gain $=0.4,10 \mathrm{kHz}$)	120	210	333	$\mu \mathrm{s}$
		Register 7 = b'00101001' (gain $=2,10 \mathrm{kHz}$)	31	52	105	
		Register 7 = b'00101010' (gain $=10,10 \mathrm{kHz}$)	31	52	105	
P_{1} IA	Pole frequency	Register 7 = b'000000xx' (400 Hz)	360	600	1000	Hz
P_{2} IA	Pole frequency	Register 7 = b'000101xx' (2kHz)	1.4	2.8	3.8	kHz
P_{3} IA	Pole frequency	Register 7 = b'001010xx' (10kHz)	8.8	13.5	18.2	kHz
12-Bit Analog-to-Digital Converter (input at ADC_IN)						
$\mathrm{V}_{\text {ADC_LR }}$	Linear Range	Input applied to ADC_IN	0		2.0	V
$V_{\text {ADC_FSE }}$	Full scale error	Best fit curve applied to full range	-2.5	0	2.5	\%
$\mathrm{V}_{\text {ADC_OFFSET }}$	Offset Error		-10	0	10	mV
$V_{\text {ADC_IN }}$	Integral nonlinearity	$-55^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$	-6	0	6	LSB
		$125^{\circ} \mathrm{C}$	-7	0	7	
VADC_DN	Differential nonlinearity		-1	0	3	
Iadc_Leak	Leakage current	Register 7 = b'01000000' (analog front end is disabled); ADC not converting	-0.2	0	0.2	$\mu \mathrm{A}$
tconv	Conversion Time	Cycles of CLK pin, guaranteed by design		13		clocks
$\mathrm{t}_{\text {ACQU }}$	Acquisition Time			25		
$\mathrm{t}_{\text {SAMP }}$	Sample Period			38		
Fixed Threshold Bi-Level Inputs						
$V_{\text {BLI\#_THRES }}$	Threshold (Rising Voltage)	Internal reference	2.45	2.50	2.55	V
		With external 2.50 V reference	2.45	2.50	2.55	
$V_{\text {BLI\#_HYS }}$	Hysteresis	$\begin{aligned} & \text { Rising threshold }=\mathrm{V}_{\text {BLI\#_THRES }} \\ & \text { Falling threshold }=\left(\mathrm{V}_{\text {BLI\#_THRES }}-\mathrm{V}_{\text {BLI\#_HYS }}\right) \end{aligned}$	60	120	180	mV
VBLI\#_CLP_P	Voltage Clamp (power applied)	Clamp Current $=1 \mathrm{~mA}$ into pin	15	20	23	V
		Clamp Current $=-1 \mathrm{~mA}$ out of pin	-23	-20	-15	
VBLI\#_CLP	Voltage Clamp (power removed)	Clamp Current $=1 \mathrm{~mA}$ into pin	15	20	23	V
		Clamp Current $=-1 \mathrm{~mA}$ out of pin	-23	-20	-15	
$\mathrm{IBLI}_{\text {B_I_BIAS }}$	Bias Current	$\mathrm{V}_{\text {BLI } 1}=0 \mathrm{~V}$ to 5 V	-0.2	0	1.5	$\mu \mathrm{A}$
IbLI\#_LEAK	Leakage Current	$\mathrm{V}_{\text {BLI1 }}=0 \mathrm{~V}$ to 5 V ; IC powered off	-0.2	0	1.5	$\mu \mathrm{A}$
$\mathrm{t}_{\text {BLI\# }}$	Propagation Delay	High to low transition	0.3	0.8	1.3	$\mu \mathrm{s}$
		Low to high transition	0.8	2.1	3.4	
$V_{\text {BL_TH }}$	BL_TH pin Voltage Range		0.1		4.9	V
IBL_TH	Threshold pin Leakage	$\mathrm{V}_{\text {BL_TH }}=0 \mathrm{~V}$ to 5 V	-0.2	0	2.0	$\mu \mathrm{A}$

64 Analog Input Telemetry Controller for Space

Symbol	Parameter	Test Conditions/Comments	Min	Typ	Max	Units
Logic Levels for FPGA or MCU System Controller Interface (pins 2 - pin 32) I/Os						
$\mathrm{V}_{\text {EXT_VEE, }} \mathrm{V}_{\text {EXT_VREF }}$	Program pins	Threshold Voltage	2.0	2.5	3.0	V
VLOG_IN	Input Logic Threshold	Threshold Voltage	35	50	65	\%VDD
VLog_out	Logic Output Levels	High Logic Level (4mA source)	$\begin{gathered} \hline \text { VDD- } \\ 0.3 \end{gathered}$		VDD	V
		Low Logic Level (4mA sink)	0		0.3	
ILog_IN	Input currents	$\overline{\text { SPI_A, }}$ SPI_B: V ${ }_{\text {LOG_IN }}=3.3 \mathrm{~V}$	-2	0	2	$\mu \mathrm{A}$
		$\overline{\text { SPI_A, }}$ SPI_B: V LOG_IN $=0 \mathrm{~V}$	-10	-4	-1.5	
		CQFP-32 pins 2, 6, 8 to 10, 14 to 21, 22 and QFP-208 pins $5,10,14,16,18,25$ to 30,32 , 33,35 . I/O as input, $\mathrm{V}_{\text {LOG_IN }}=3.3 \mathrm{~V}$	1.5	4	10	
		CQFP-32 pins 2, 6, 8 to 10 , 14 to 21, 22 and QFP-208 pins $5,10,14,16,18,25$ to 30,32 , 33,35 . I/O as input, $\mathrm{V}_{\mathrm{LOG}}$ IN $=0 \mathrm{~V}$	-2	0	2	
		CQFP-32 pins 3 to 5, 7 and QFP-208 pins 6, 7, 8 12. I/O as input, $\mathrm{V}_{\text {LOG_IN }}=3.3 \mathrm{~V}$	-2	0	2	
		CQFP-32 pins 3 to 5, 7 and QFP-208 pins 6, 7, 8 12. I/O as input, $\mathrm{V}_{\text {LOG_IN }}=0 \mathrm{~V}$	-10	-4	-1.5	
		$\overline{\text { EXT_VREF }}$ or $\overline{\mathrm{EXT}}$ _VEE $=5 \mathrm{~V}$	-2	0	2	
		$\overline{\text { EXT_VREF }}$ or $\overline{\text { EXT_VEE }}=0 \mathrm{~V}$	-12	-6	-1.5	
		RESET with power on enabled: $V_{\text {LOG_IN }}=3.3 \mathrm{~V}$	1.5	4	10	
		RESET with power on enabled: $\mathrm{V}_{\text {LOG_IN }}=0 \mathrm{~V}$	-150	-66	-33	
Operating Current						
Ivcc (LX7730L)	VCC Operating Current	Register 1 = b'11011111'. All blocks enabled Register $7=$ b'00xxxx00'. Gain $^{\prime}=0.4, \mathrm{CH} 1=$ OV. Internal VEE (EXT_VEE pin tied to +5 V)	38	61	78	mA
		Register 1 = b'11011111'. All blocks enabled Register $7=b^{\prime} 00 x x x x 00$ '. Gain $=0.4$ External VEE $=-12 \mathrm{~V}$ (EXT_VEE pin tied to GND)		54	71	
Ivcc (LX7730)		Register 1 = b'11011111'. All blocks enabled Register $7=$ b'00xxxx00'. Gain $^{2}=0.4, \mathrm{CH} 1=$ OV. Internal VEE (EXT_VEE pin tied to +5 V)	38	70	85	
See Section 12.1.3 on page 17 for power saving options						
Ivcc (LX7730L)	VCC Standby Current	Register 1 = b'0xxxxxxx'	2	4	6.75	mA
Ivcc (LX7730)					7.00	
Ivee	VEE Current	Using external VEE source Positive current out of pin	-2	-4.7	-7.0	mA
Ivdd	VDD Current	All digital I/O pins static		0.9		mA
Under Voltage Detection						
V Vcc	VCC UVLO	Voltage rising; 200mV hysteresis	9.5	10	10.5	V
$\mathrm{V}_{\text {VEE }}$	VEE UVLO	Voltage falling; 200mV hysteresis	-8.2	-8.0	-7.5	V
$\mathrm{V}+5 \mathrm{~V}$	+5V UVLO	Voltage rising; 200mV hysteresis	3.9	4.15	4.4	V

[^0]
11 System Outline

The LX7730 circuitry comprises:

- A power supply and voltage reference (Section 12 on page 16)
- A reset circuit (Section 13 on page 19)
- Bi-level discrete monitors (BDM) comprising 16 comparators for monitoring analog inputs (Section 14 on page 20)
- 8 comparators monitor a combination of the 64 analog inputs, and provide outputs via an internal register
- 8 comparators monitor 8 dedicated analog input pins, and provide outputs on 8 dedicated digital output pins
- A 12-bit analog signal monitor (ASM) with programmable gain and filtering for a mix of up to 64 single-ended or 32 differential inputs (Section 15 on page 24)
- Two DACs for current-driving sensors and other purposes (Section 16 on page 28)
- Multiple digital interfaces (one parallel, two serial) to the system controller, with registers for configuration, operation, and monitoring (Section 17 on page 29)

Figure 1. Block Diagram

12 Power Supplies, Bias Resistors, and Voltage Reference

12.1 Power Supply Configurations and Decoupling

The main input supply to the LX7730 is a single +11.4 V to 16 V supply, VCC, with a typical standby current of 4 mA , and a typical operating current dependent on features enabled. A separate supply, VDD, drives the logic I/O and sets the I/O thresholds and voltages. On-chip power management (Figure 2) provides the following additional rails from VCC:

- A linear regulator provides $\mathrm{a}+5 \mathrm{~V} \pm 0.25 \mathrm{~V}$ supply from VCC , with the internal circuitry drawing 30 mA typical current
- An inverting charge pump generates an unregulated negative supply, VEE, from VCC
- An external -16 V to -10 V supply at 5 mA typical may be used instead
- A linear regulator provides a -2V supply from VEE for internal biasing
- A precision $+5 \mathrm{~V} \pm 1 \%$ voltage reference
- An external voltage reference (typically 5 V or 5.12 V) may be used instead

Figure 2 below and Table 6 on page 19 outline the power supply connections and provide decoupling capacitor recommendations, presuming low inductance capacitors such as MLCCs are used. Capacitance values can be reduced for supplies with tracking under a few inches to a bulk capacitor. Do not reduce the values for C4 and C5 in Figure 2.

See Table 6 on page 19 for details on the 3 resistors $R_{A D C _B I A S _I N}, R_{A D C _D A C _O U T}$, and $R_{I R E F 1}$. See section 0 on page 45 for details on the 10-bit DAC resistors on the DAC_P and DAC_N outputs.

The LX7730 won't be damaged by any of the permutations of VDD and/or VCC being down, with or without logic signals being applied up to 7 V abs max. However, the LX7730's internal registers and operations are automatically reset by failure of either VCC or VDD, and data readback (serial or parallel) with return logic low and writes will be ignored as coldspare behavior. If the host system detects a VCC and/or VDD failure, then after restoring the rail(s), the LX7730 should be re-configured as it would be for a normal cold start.

Figure 2. Power Supplies, Bias Resistors, and Voltage Reference

Power Supplies, Bias Resistors, and Voltage Reference
Table 1. Power Supplies Configuration and Decoupling Capacitors

Supply Pin	Voltage Range	Notes	Capacitor	Ground
VCC	11.4 V to 16V	Main LX7730 supply	$4.7 \mu \mathrm{~F}$	GND
+5V	4.5 V to 5.5 V	Internal +5 V linear regulator from VCC used	$1 \mu \mathrm{~F}$	GND
	5.25 V to 6.0 V	External $+5.5 \mathrm{~V} \pm 0.25 \mathrm{~V}$ supply used, auto-disabling the internal regulator		
VREF	4.95 V to 5.05 V	Internal $+5 \mathrm{~V} \pm 1 \%$ reference voltage used (EXT_REF pin tied to +5 V)	$1 \mu \mathrm{~F}$	AGND
	0 V to 5.5 V	External 5V or 5.12 V reference voltage used (EXT_REF pin tied to GND)	As required	
VDD	2.25 V to 5.5 V	External FPGA or MCU controller's I/O power supply	$2.2 \mu \mathrm{~F}$	GND
VEE	-VCC to -10V	Internal inverting charge pump from VCC used (EXT_VEE pin tied to +5 V). Flying capacitor between PCP pin 122 and NCP pin $\overline{123}$ is $0.47 \mu \mathrm{~F}$	$2.2 \mu \mathrm{~F}$	GND
	-16V to -10V	External VEE supply used (EXT_VEE pin tied to GND)		AGND
-2V	-2V typical	Internal -2V linear regulator from VEE	$1 \mu \mathrm{~F}$	GND

12.1.1 VCC Options

The LX7730 is typically operated from a system 12 V or 15 V nominal supply. A 12 V nominal supply is recommended for monitoring and measuring signals on CH 1 to CH 64 up to $\pm 8 \mathrm{~V}$, to minimize power consumption. A 15 V nominal supply is recommended for monitoring and measuring signals over the full $\pm 10 \mathrm{~V}$ range. Note that the input voltage limit for the 8 bilevel comparators BLI1 to BL8 is $\pm 8 \mathrm{~V}$ maximum, independent of VCC.

If it is necessary to meet ECSS-E-ST-50-14C's fault voltage tolerance $\left(\mathrm{V}_{\mathrm{rtt}}\right)$ specification of $\pm 17.5 \mathrm{~V}$ for the CH 1 to CH 64 analog inputs when power is applied, then select VCC in the range 15 V to 16 V . The LX7730's fault voltage tolerance exceeds $\pm 17.5 \mathrm{~V}$ when powered down. See section 15.4 on page 28 for details of alternative protection approaches.

12.1.2 VEE Options

The main negative supply, VEE, is generated by an internal charge pump by default. This charge pump can be disabled to allow an external -16 V to -10 V supply to be used instead (Table 2).

Table 2. VEE Supply Methods

| VEE Supply Method | EXT_VEE
 pin | GND pin | Capacitor Between PCP
 pin and NCP pin
 (C4 in Figure 2) | Capacitor on
 VEE pin
 (C5 in Figure 2) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| VEE internally generated by inverting charge pump from VCC | +5 V | GND | $0.47 \mu \mathrm{~F}$ | $2.2 \mu \mathrm{~F}$ to GND |
| VEE externally supplied (-16V to -10 V) directly to VEE pin | GND or
 AGND | GND or
 AGND | Not fitted. Leave PCP and
 NCP pins open | $2.2 \mu \mathrm{~F}$ to AGND |

12.1.3 Power Saving Options

The internal 5 V linear regulator accounts for about 30 mA of the current draw from the VCC pin. The regulator itself contributes 210 mW to 300 mW to the dissipation from a 12 V to 15 V VCC supply by dropping 7 V to 10 V . This consumption can be removed by driving the 5 V pin 11 with an external $5.5 \mathrm{~V} \pm 0.25 \mathrm{~V}$ supply, for example by a local buck regulator from the 12 V to 15 V VCC supply. The external supply is toleranced as $5.5 \mathrm{~V} \pm 0.25 \mathrm{~V}$ to as to be above the internal 5 V linear regulator's 5.25 V upper specification, and still below the 6 V maximum pin rating. Maintaining a higher voltage disables the internal 5 V linear regulator, which remains available as seamless backup should the external 5.5 V supply suffer short term brownouts or even fail. If the external 5.5 V supply is not derived from VCC, ensure that the 5.5 V supply is never more than a Schottky diode drop higher than VCC.

Table 3 shows the trade-offs between VCC supply current, ADC INL, and ADC sample rate by adjusting the bias resistor on the ADC_BIAS_IN pin, the frequency of the ADC clock on CLK pin, and the ADC input voltage range used. Note that while the values given are worst case data taken from characterization, they are not production tested and therefore are not guaranteed.

Table 4 on page 18 shows the typical VCC supply current savings when various internal circuit blocks are disabled, and summarizes the functions affected and not affected.

Table 5 on page 19 provides typical current consumption for various power supply choices with ADC operating at 12.5 ksps as follows:

- ADC input of 200 mV at ADC_IN. Register $1=0 \times A 1$ (ADC on, analog front end off). Register $7=0 \times 40$
- ADC input of 200 mV at CH1. Register $1=0 \times D F$ (ADC and complete analog front end on). Register $7=0 \times 00$ or 0×02

Microsemi

64 Analog Input Telemetry Controller for Space
Some internal stages in the instrumentation amplifier, filter, and ADC use resistive loadings, so current consumption rises with signal amplitude at ADC_IN. The different signal amplitudes in Table 5 for gains of 0.4 and 10 highlights this effect.

The LX7730 settings used for the measurements in Table 5 are:

- VDD $=5 \mathrm{~V}$
- $C L K=500 \mathrm{kHz}, \mathrm{R}_{\text {IREF } 1}=20 \mathrm{k} \Omega, \mathrm{R}_{\text {ADC_BIAS_IN }}=7.87 \mathrm{k} \Omega$, and $\mathrm{R}_{\text {ADC_DAC_OUT }}=158 \Omega$
- Current Mux register $5=0 \times 80$, 10-bit DAC register 14 and $15=0 \times 00$ and 0×00 to disable both current DACs
- Current Source, Bank-Bi-Level, 10-Bit DAC, and BLI/BLO Bi-Level disabled in register 1
- Signal Conditioning Amplifier register $7=0 \times 00$ for gain $=0.4,0 \times 02$ for gain $=10$
- \quad ADC Control register $=0 \times 10$ to configure the ADC to be auto-sampling at its fastest rate

Table 3. Operating Current Reduction by ADC Bias Reduction

$\mathrm{R}_{\text {ADC_BIAS_IN }}$	$\mathrm{R}_{\text {ADC_DAC_OUT }}$	CLK	Max Sample Rate	Input range $\mathrm{V}_{\text {ADC_I }}$	INL Max	Ivcc
$7.87 \mathrm{k} \Omega \pm 0.1 \%$	$158 \Omega \pm 0.1 \%$	500 kHz	13ksps	0 V to 2V	$\pm 7 \mathrm{LSB}$	Factory tested specification
				0.2 V to 1.8 V	± 4.5 LSB	No change in operating current
				0.4 V to 1.6 V	± 3.25 LSB	
		250 kHz	6.5 ksps	0 V to 2 V	$\pm 8 \mathrm{LSB}$	
				0.2 V to 1.8 V	± 4.5 LSB	
				0.4 V to 1.6 V	± 3.25 LSB	
$15 k \Omega \pm 0.1 \%$	$301 \Omega \pm 0.1 \%$	250 kHz	6.5 ksps	0 V to 2V	$\pm 8 \mathrm{LSB}$	7.1 mA to 8.3 mA reduction in operating current
				0.2 V to 1.8 V	± 4.5 LSB	
				0.4 V to 1.6V	± 3 LSB	
$30 \mathrm{k} \Omega \pm 0.1 \%$	$604 \Omega \pm 0.1 \%$	250 kHz	6.5 ksps	0 V to 2V	± 8.5 LSB	11.3 mA to 12.2 mA reduction in operating current
				0.2 V to 1.8V	± 5.75 LSB	
				0.4 V to 1.6 V	± 4 LSB	
		125 kHz	3.25 ksps	0 V to 2V	± 8.75 LSB	
				0.2 V to 1.8 V	± 4.5 LSB	
				0.4 V to 1.6 V	± 3.25 LSB	

Table 4. Typical Analog Block Operating Currents and Wakeup Times

LX7730 Internal Block	Functions Available with Block Disabled	Enable/Disable Register	Typical Block Current (VCC = 15V)	Typical Wakeup Time (VCC = 15V)
CH1-CH64 Multiplexer \& Instrumentation Amplifier with gain of 10	BLI1-8 bi-level comparators. ADC can acquire an external 2 V full-scale signal on ADC_IN	Function Enable register 1 bits D3 \& D6 (Table 17)	$\begin{gathered} 11 \mathrm{~mA} \\ (\mathrm{ADC} \mathrm{IN}=0 \mathrm{~V}) \end{gathered}$	$4 \mu \mathrm{~s}$
CH1-CH64 Multiplexer \& Instrumentation Amplifier with gain of 2 or 0.4				$464 \mu \mathrm{~s}$
Multiplexer Current Source @ 2mA	All ADC acquisition system including multiplexer bi-level comparators, but excluding both current source types	Function Enable register 1 bit D5 (Table 17)	2 mA	$1.4 \mu \mathrm{~s}$
Bank Bi-Level Comparators	BLI1-8 bi-level comparators. ADC acquisition system except multiplexer bi-level comparators	Function Enable register 1 bit D4 (Table 17)	1 mA	-
Instrumentation Amplifier	BLI1-8 bi-level comparators. Multiplexer bi-level comparators. ADC can acquire a 2V full-scale signal on ADC_IN	Function Enable register 1 bit D3 (Table 17)	$\begin{gathered} 1 \mathrm{~mA} \\ \left(\mathrm{ADC} _\mathrm{IN}=0 \mathrm{~V}\right) \end{gathered}$	$40 \mu \mathrm{~s}$
10-Bit DAC Current Source	All ADC acquisition system including multiplexer bi-level comparators. Alternate current source available via Current Mux Level register 5 (Table 21 on page 38)	Function Enable register 1 bit D2 (Table 17)	2 mA	$44 \mu \mathrm{~s}$
BLI1-8 Bi-Level Comparators	All ADC acquisition system including multiplexer bi-level comparators	Function Enable register 1 bit D1 (Table 17)	1 mA	$1.8 \mu \mathrm{~s}$
ADC	Acquisition system analog front end including multiplexer bi-level comparators. Output of analog front end is available at ADC_IN for acquisition by external ADC	Function Enable register 1 bit D0 (Table 17)	16 mA	$7.2 \mu \mathrm{~s}$

Table 5. Consumption for Various Power Supply Choices and ADC Operating Modes

VCC	VEE	+5V	Ivcc	$\mathrm{I}_{\text {VEe }}$	${ }_{+}+5.5 \mathrm{~V}$	ADC Mode
	Internal charge pump	Internal 5V linear regulator operating from VCC	29 mA	-	-	ADC_IN used ${ }^{\text {(note 1) }}$
12.0 V			58 mA			CH 1 used with gain $=0.4{ }^{\text {(note 2) }}$
			69 mA			CH 1 used with gain $=10^{\text {(note 3) }}$
15.0V			30 mA			ADC_IN used ${ }^{\text {(note 1) }}$
			61 mA			CH 1 used with gain $=0.4{ }^{\text {(note 2) }}$
			72 mA			CH 1 used with gain $=10^{\text {(note 3) }}$
12.0 V15.0 V	External -12.0V		26 mA	2.1 mA	-	ADC_IN used ${ }^{\text {(note 1) }}$
			52 mA	4.7 mA		CH 1 used with gain $=0.4{ }^{\text {(note 2) }}$
			63 mA	5.0 mA		CH 1 used with gain $=10{ }^{\text {(note 3) }}$
			26 mA	2.2 mA		ADC_IN used ${ }^{\text {(note 1) }}$
			54 mA	4.9 mA		CH 1 used with gain $=0.4{ }^{(\text {note 2) }}$
			64 mA	5.1 mA		CH 1 used with gain $=10^{\text {(note 3) }}$
12.0 V	Internal charge pump	External 5.5V	6 mA	-	25 mA	ADC_IN used ${ }^{\text {(note 1) }}$
			29 mA		24 mA	CH 1 used with gain $=0.4{ }^{(\text {note 2) }}$
			30 mA		40 mA	CH 1 used with gain $=10^{\text {(note 3) }}$
	External -12.0V		3 mA	2.2 mA	23 mA	ADC_IN used ${ }^{\text {(note 1) }}$
			24 mA	4.9 mA	29 mA	CH 1 used with gain $=0.4{ }^{(\text {note 2) }}$
			24 mA	5.2 mA	39 mA	CH 1 used with gain $=10^{\text {(note 3) }}$
0 mV s mV sig signa	$\begin{aligned} & \text { at ADC_IN } \\ & \text { at ADC_IN } \\ & \text { DC_IN } \end{aligned}$					

12.2 Bias Resistors

Table 6 lists the 3 bias resistors required for standard ADC operation (CLK $=500 \mathrm{kHz}$). See Table 3 on page 18 for other options for ADC_BIAS_IN and ADC_DAC_OUT values. Minimize the track length from each resistor to its pin, and route a direct track from the other end of each resistor to the nearest AGND pin. Pages 3 and 2 show example layouts.

Table 6. Bias Resistors

Resistor Function	Resistance to AGND	Voltage Across Resistor	Resistor Dissipation
IREF1	$20 \mathrm{k} \Omega \pm 1 \%$	1.6 V static	0.13 mW
ADC_BIAS_IN	$7.87 \mathrm{k} \Omega \pm 0.1 \%$	1.6 V static	0.33 mW
ADC_DAC_OUT	$158 \Omega \pm 0.1 \%$	From 1V to 2V during an ADC conversion, otherwise 0V	25 mW peak

13 Reset Pin and Power-On Reset

13.1 Reset Circuit

The LX7730's internal reset circuit (Figure 3 on page 20) uses a Power On Enable block to monitor the level of the +5 V supply. The POE signal is low initially, pulling the RESET pin low through a 50 k resistor. The logic level at the RESET pin is inverted to provide an internal RESET signal, which resets internal registers and user interfaces. The POE signal goes high once the +5 V supply has stabilized, pulling the RESET pin high through the 50 k resistor, releasing the reset condition. The LX7730 can also be reset using the Master Reset register 0 (Table 16 on page 33). Note that most system blocks are enabled on reset. Unwanted blocks may be disabled via the Function Enable register 1 (Table 17 on page 34).

An optional external capacitor from the $\overline{\text { RESET }}$ pin to GND provides further noise immunity. 1 nF is recommended to provide a nominal 35μ s delay.

DELAY $=35 \times$ C $_{\text {RESET }} \mu \mathrm{s}$ where C RESET is in nF

Equation 1. $\overline{\text { RESET Pin Capacitor Delay }}$

Once the LX7730 is out of reset and operating normally, the RESET pin remains pulled high internally through the $50 \mathrm{k} \Omega$ resistor. This may be over-ridden by an external active low RESET pulse from a system controller, for example. An opendrain/collector output, a tri-stateable output, or a push-pull output through a series diode (anode to RESET pin) may be used. If a push-pull logic signal is used to drive the RESET pin directly, then this also over-rides the LX7730's Power On Enable signal. In this case the RESET pin must be pulsed low after power-up to ensure that the LX7730's logic is reset.

Figure 3. LX7730's Internal Reset Block Diagram
The LX7730 can also be put into the reset state by writing $0 \times 6 \mathrm{~A}$ to the Master Reset register 0 (Table 16 on page 33). Toggling the RESET pin low then high clears the Master Reset register 0 to 0×00 as part of the reset process.

14 Bi-level Discrete Monitors (BDM)

14.1 BDM Summary

There is a total of 16 voltage comparators available to detect changes on single ended signals:

- The 8 BLI/BLO bi-level comparators use dedicated input pins BLI1 to BLI8 and output pins BLO1 to BLO8
- The 8 bank bi-level comparators' inputs connect to a configurable combination of the 64 analog inputs CH 1 to CH 64 (see block diagram Figure 6 on page 22, and section 15 on page 24). The bank comparator outputs appear in the Bank Bi-Level Comparators Output Status register 13 (Table 29 on page 44).

Both sets of comparators are enabled by default on POR and after a reset. The BLI/BLO bi-level comparators may be disabled (to save power) by clearing Function Enable register 1 bit D1 $=0$ (Table 9 on page 34). The bank bi-level comparators may be disabled by clearing bit D4 $=0$ in the same register. Table 4 on page 18 shows typical analog block operating currents and wakeup times.

14.2 BLI/BLO Fixed Threshold Bi-Level Comparators

The 8 BLI/BLO bi-level comparator non-inverting inputs share a common trip threshold (Figure 5 on page 21). By default on POR or after a reset, the rising voltage threshold is $2.5 \mathrm{~V} \pm 50 \mathrm{mV}$, and the hysteresis is $120 \mathrm{mV} \pm 60 \mathrm{mV}$ on falling edges. Alternatively, an external trip threshold in the range 0.1 V to 4.9 V may be applied to the BL_TH pin, and this voltage is selected by setting B7 in the Bank Bi-Level register 12 (Table 28 on page 44).

The 4 BLO outputs BLO5 to BLO8 have an alternate system monitoring function when the LX7730 is in reset state (Table 7 below). The LX7730 is in reset state when either RESET pin 24 held active low (section 13 on page 19), or Master Reset register 0 (Table 16 on page 33) contains $0 \times 6 \mathrm{~A}$.

Table 7. BLO1 to BLO8 Output System Monitoring Functions In Reset State

Output	Function when the LX7730 is in reset state
BLO1 - BLO4	Outputs of fixed threshold bi-level comparator inputs BL1, BL2, BL3 and BL4, using the default 2.5V threshold
BLO5	VCC LVD status, Power Status Register 2 bit D2 (Table 18 on page 33)
BLO6	VEE LVD status, Power Status Register 2 bit D1 (Table 18 on page 33)
BLO7	+5V LVD status, Power Status Register 2 bit D0 (Table 18 on page 33)
BLO8	Power On Enable status, which is high when the internal logic is ready after power-up

The input voltage limit for the 8 bi-level comparators BLI1 to BL8 is +8 V maximum, +10 V absolute maximum, independent of VCC. To protect these inputs beyond +8 V , an external clamp circuit can be used (Figure 4 below). Over-voltage capability is limited by component power ratings. At $\pm 17.5 \mathrm{~V}$, R1 dissipates $24 \mathrm{~mW} / 61 \mathrm{~mW}$, the Zener $15 \mathrm{~mW} / 2 \mathrm{~mW}$.

Figure 4. Bank Bi-Level Comparator Input Over-Voltage Clamp

The input protection clamps at each BLI input operate between the input and GND. The small ($<1.5 \mu \mathrm{~A}$) leakage current drawn by a clamp provides a weak pulldown to each input, so an open BLI input will produce a corresponding low BLO output, presuming no noise coupling or other EMI effects at the input.

Figure 5. BLI-BLO Bi-Level Comparators Block Diagram

14.3 Bank Bi-Level Comparators

The 8 bank bi-level comparator non-inverting inputs share a common trip threshold set in the range 0 to 5 V . This is set by an 8 -bit DAC controlled by the 8 -Bit Bank Bi-Level Comparators Threshold DAC register (Table 26 on page 42). The bank bi-level comparator outputs are available in the Bank Bi-Level Comparators Output Status register 13 (Table 29 on page 44). The bank bi-level comparators are sampled during the clock cycle that register 13 is read.

The bank bi-level comparator non-inverting inputs connect to 8 of the 64 analog inputs CH 1 to CH 64 , which are also the inputs to the analog signal monitor (section 15 on page 24). The multiplexers for CH 1 to CH 64 are controlled by either the bank bi-level comparator circuitry or by the analog signal monitor. Either way, the bank bi-level comparators always receive 8 different inputs from CH 1 to CH 64 .

14.3.1 Bank Bi-Level Comparators Control the Bank Input Multiplexers

The Bank Bi-Level Comparators Input Selection register 12 (Table 28 on page 44) selects which bank of 8 inputs are routed to the non-inverting inputs of the bank bi-level comparators, when register 12's En Sw bit D3 = 1. The register selects one of eight groups of consecutive inputs to be routed to the comparators. The groups are CH 1 to CH 8 , CH 9 $\mathrm{CH} 16, \mathrm{CH} 17-\mathrm{CH} 24, \mathrm{CH} 25-\mathrm{CH} 32, \mathrm{CH} 33-\mathrm{CH} 40, \mathrm{CH} 41-\mathrm{CH} 48, \mathrm{CH} 49-\mathrm{CH} 56$, and $\mathrm{CH} 57-\mathrm{CH} 64$.

Figure 6 on page 22 shows a block diagram of bank bi-level comparators operating with register 12's En Sw bit D3 = 1 . Here, the 8 bank multiplexers are controlled by a common 3-bit selection input.

The analog signal monitor can acquire single ended or differential signals from any combination of the eight inputs preselected by the setting in register 12 .

Figure 6. Bank Bi-Level Comparators Block Diagram

14.3.2 Analog Signal Monitor (ASM) Controls the Bank Input Multiplexers

When Bank Bi-Level Comparators Input Selection register 12's En Sw bit D3 = 0, the bank bi-level comparators are connected to inputs selected by Mux Channel Select registers 3 and 4 (Table 19 on page 36, Table 20 on page 37). In this mode, the 8 bank multiplexers are controlled individually, not by a common 3-bit selection input as in the case for Figure 6 . Since the output of each of the 8 bank multiplexers routes to a bank bi-level comparator input, it is necessary to follow the ASM multiplexer input selection logic to determine the bank bi-level comparator inputs.

The Non-Inverting Mux Channel Select register 3 (Table 19 on page 36) selects which of the inputs CH 1 to CH 64 is routed by the analog multiplexer to the non-inverting input of the instrumentation amplifier. This selected input also routes to one of the bank bi-level comparators. The 3 bits [BD2:BD0] in register 3 select a multiplexer bank, and therefore selects which bank bi-level comparator the input is routed to also. Table 8 below identifies the bank bi-level comparator defined by Table 19 .

Table 8: Bank Allocated by Register 3 for the Instrumentation Amplifier's Non-Inverting Input

Register Description	Register Address	Register Data							
		D7	D6	D5	D4	D3	D2	D1	D0
Non-Inverting Mux Channel Select register	$\begin{gathered} 3 \\ 0 \times 03 \end{gathered}$	-	-	BD2	BD1	BD0	PD2	PD1	PD0
Bank 1 selected. Register 3 selects input for bank comparator 1	$\begin{gathered} 3 \\ 0 \times 03 \end{gathered}$	x	x	0	0	0	X	X	X
Bank 2 selected. Register 3 selects input for bank comparator 2				0	0	1	X	x	X
Bank 3 selected. Register 3 selects input for bank comparator 3				0	1	0	x	x	x
Bank 4 selected. Register 3 selects input for bank comparator 4				0	1	1	X	x	x
Bank 5 selected. Register 3 selects input for bank comparator 5				1	0	0	X	X	X
Bank 6 selected. Register 3 selects input for bank comparator 6				1	0	1	x	x	X
Bank 7 selected. Register 3 selects input for bank comparator 7				1	1	0	X	X	X
Bank 8 selected. Register 3 selects input for bank comparator 8				1	1	1	x	x	X

The Inverting Mux Channel Select register 4 (Table 20 on page 37) selects which of the inputs CH 1 to CH 64 is routed by the analog multiplexer to the inverting input of the instrumentation amplifier. The 3 bits [BD2:BD0] in register 4 select a multiplexer bank, and therefore selects which comparator. As before, Table 9 below identifies the bank bi-level comparator defined by Table 20.

Table 9: Bank Allocated by Register 4 for the Instrumentation Amplifier's Non-Inverting Input

Register Description	Register Address	Register Data							
		D7	D6	D5	D4	D3	D2	D1	D0
Inverting Mux Channel Select register	$\begin{gathered} 4 \\ 0 \times 04 \end{gathered}$	-	Use SE_RTN	BD2	BD1	BD0	PD2	PD1	PD0
Bank 1 selected. Register 4 selects input for bank comparator 1	$\begin{gathered} 4 \\ 0 \times 04 \end{gathered}$	x	x	0	0	0	x	X	x
Bank 2 selected. Register 4 selects input for bank comparator 2				0	0	1	x	X	x
Bank 3 selected. Register 4 selects input for bank comparator 3				0	1	0	x	x	x
Bank 4 selected. Register 4 selects input for bank comparator 4				0	1	1	x	x	X
Bank 5 selected. Register 4 selects input for bank comparator 5				1	0	0	x	x	x
Bank 6 selected. Register 4 selects input for bank comparator 6				1	0	1	x	x	x
Bank 7 selected. Register 4 selects input for bank comparator 7				1	1	0	x	x	x
Bank 8 selected. Register 4 selects input for bank comparator 8				1	1	1	x	x	x

The remaining 6 or 7 bank bi-level comparators not assigned to a bank by register 3 and register 4 are routed to the inputs shown in Table 10 below. There will be 7 unassigned comparators if register 3 and register 4 select the same bank.

Table 10: Bank Bi-Level Comparator Inputs for Banks Not Assigned by Register 3 and Register 4

Unassigned Bank	Multiplexer Channel Routed to Bank Bi-Level Comparator
Bank 1	CH 1
Bank 2	CH 2
Bank 3	CH 3
Bank 4	CH 4
Bank 5	CH 5
Bank 6	CH 6
Bank 7	CH 7
Bank 8	CH 8

64 Analog Input Telemetry Controller for Space
When the analog signal monitor is configured to acquire a single ended signal, then the inverting input of the instrumentation amplifier is normally either connected to GND or to the SE_RTN pin. In this case, register 4 isn't needed to select an input channel, and can used simply to select an input to one of the bank bi-level comparators.

15 12-bit Analog Signal Monitor (ASM)

The analog signal acquisition system comprises the following blocks (Figure 7):

- A 64-input multiplexer organized as 8 banks of 8 -input multiplexers. A combination of up to 64 single-ended or 32 differential inputs from 64 package pins CH 1 to CH 64 are selectable
- Differential signals in the range -5 V to +5 V are constrained that non-inverting and inverting input pairs must be connected to different banks. See section 15.1.1 on page 25 for details and a routing example
- Positive-going single-ended signals in the range 0 to +5 V can be used on any of the 64 inputs, and referred to either the internal GND or the SE_RTN pin. See section 15.1.2 on page 26 for details and a routing example
- Negative-going single-ended signals in the range -5V to 0 V are treated as differential signals, with the signal connected to the inverting input pin and the non-inverting input pin connected to the signal ground (AGND). See section 15.1.3 on page 27 for details and a routing example
- The 8 multiplexer bank outputs are also routed to the non-inverting inputs of the 8 bank voltage comparators, as discussed in section 14.3 on page 21
- One of two internal programmable current sources may be enabled and routed to any selected input to drive passive sensors, as discussed in section 16 on page 28
- An instrumentation amplifier with a choice of three fixed gain settings ($x 0.4, \mathrm{x} 2$, or x 10) to prescale single ended and differential input signals with ranges of $5 \mathrm{~V}, 1 \mathrm{~V}$, or 200 mV
- A 2-pole anti alias filter with a choice of three fixed pole settings ($10 \mathrm{kHz}, 2 \mathrm{kHz}$, or 400 Hz)
- a 12-bit ADC with a 0 V to 2 V input range, with input accessible directly at the ADC_IN pin
- The ADC input can be acquired by an external ADC for redundancy by monitoring ADC_IN
- The ADC input can be driven directly via an external signal path when the anti-alias filter is put into $\mathrm{Hi}-\mathrm{Z}$ using the Filter Off bit D6 in the Signal Conditioning Amplifier register 7 (Table 23 on page 39)

Figure 7. Analog Signal Monitor (ASM) Signal Chain
Various blocks in the analog signal acquisition system can be disabled to save power if they are not used through the Function Enable register (Table 9 on page 34). This is discussed in section 12.1.3 on page 17. Table 4 on page 18 shows typical analog block operating currents and wakeup times.

15.1 Configuring the Instrumentation Amplifier's Input Multiplexers

The input multiplexer selects an input for the instrumentation amplifier's non-inverting and inverting inputs. The ADC processes a unipolar voltage with a fixed range 0 to 2 V , so the voltage at the instrumentation amplifier's non-inverting input is expected to be more positive than or equal to the voltage at the inverting input.

Figure 8 on page 25 shows the structure of the instrumentation amplifier multiplexers. The input channels CH 1 to CH 64 connect to 8 bank multiplexers. The eight bank multiplexer outputs route to a further multiplexer each for the non-inverting and inverting inputs.

The 8 bank multiplexers for CH 1 to CH 64 are controlled by either the analog signal monitor or by the bank bi-level comparator circuitry according to the setting of the En Sw bit D3 in the Bank Bi-Level register 12 (Table 28 on page 44). When Bank Bi-Level Comparators Input Selection register 12's En Sw bit D3 = 0, the bank bi-level comparators are connected to inputs selected by Mux Channel Select registers 3 and 4 (Table 19 on page 36, Table 20 on page 37). See section 14.3.1 on page 21 for details of inputs selected when the bank bi-level comparators manage the bank multiplexers.

Figure 8. Instrumentation Amplifier Multiplexer Block Diagram

15.1.1 MULTIPLEXOR CONFIGURATION FOR DIFFERENTIAL SIGNALS

To acquire a differential signal in the range -5 V to +5 V , use the Mux Channel Select registers 3 and 4 (Table 19 on page 36 , Table 20 on page 37) to select the non-inverting and inverting inputs respectively. Figure 9 on page 26 shows an example of the signal routings for a differential signal. Note that SE_RTN can be selected for a differential inverting input, freeing up a CH input for use an extra positive-going single-ended signal input.

The instrumentation amplifier expects the voltage at the non-inverting input to be more positive than the voltage at the inverting input, to provide a positive-going, unipolar voltage at its output in the range 0 V to 2 V for the ADC input. If the differential input signal polarity is reversed, the output of the instrumentation amplifier will clamp at 0 V . The ADC result will be at or around 0×000 (depending on signal amplitude and offset errors). If the polarity of a differential signal to be acquired is unknown, measure it twice and swap the inputs between conversions. The correct result is the highest value.

Figure 9. Example Selection of a Differential Input for Analog-to-Digital Conversion

15.1.2 MuLtiplexor configuration for single-ended signals (positive-going)

To acquire a positive-going single-ended signal in the range $0 V$ to 5 V , configure the Non-Inverting Mux Channel Select register 3 (Table 19 on page 36) to select the non-inverting input. The inverting input can be connected to either internal AGND, or to an external GND via the SE_RTN pin. The selection of SE_RTN is made by the Inverting Mux Channel Select register (Table 20 on page 37). The selection of internal GND is made by the I GND bit D1 in the Calibration register (Table 32 on page 48). Figure 10 below shows an example of the signal routings for a positive-going single-ended signal.

Figure 10. Example Selection of a Positive-Going Single-Ended Input for Analog-to-Digital Conversion

15.1.3 MULTIPLEXOR CONFIGURATION FOR SINGLE-ENDED SIGNALS (NEGATIVE-GOING)

Negative-going single-ended signals in the range -5 V to 0 V are treated as differential signals, with the non-inverting input externally connected to 0 V , and the inverting input connected to the signal. The external GND connection is necessary because the non-inverting input cannot be connected to AGND internally or to the SE_RTN pin, unlike the inverting input.

Use the Mux Channel Select registers 3 and 4 (Table 19 on page 36, Table 20 on page 37) to select the non-inverting and inverting inputs respectively. Figure 11 below shows an example of the signal routings for one or more negative-going single-ended signals. In this example, CH 1 is selected as the GND input, and is wired to AGND on the PCB. With the choice of CH 1 made, any of the channel inputs in Bank 2 to Bank 8 may be selected for acquisition of negative-going single-ended signals. The remaining 7 inputs in Bank 1 are available for positive-going single-ended signals or differential signals as discussed in sections 15.1.2 and 15.1.1 respectively.

Figure 11. Example Selection of Negative-Going Single-Ended Inputs for Analog-to-Digital Conversion

15.2 Configuring the Instrumentation Amplifier and Anti Alias Filters

The instrumentation amplifier and anti alias filters are controlled by the Signal Conditioning Amplifier register 7 (Table 23 on page 39). The amplifier has a typical rise time (2 V step, 10% to 90%) of $52 \mu \mathrm{~s}$ with a gain of 10 or 2 , and $210 \mu \mathrm{~s}$ with a gain of 0.4. Allow settling time when switching between signals for acquisition.

15.3 Configuring the 12 Bit ADC

The ADC is a 12 -bit SAR taking its acquisition timing from a 125 kHz to 500 kHz (typically 500 kHz) clock at the CLK pin. See Table 3 on page 18 for details how operating current and INL can be reduced by adjusting the ADC's bias, input voltage range, and CLK frequency. The ADC is controlled by the ADC Control register 8 (Table 24 on page 40). See section 19.9 on page 40 for details of ADC internal timing and operation, plus configuration and control details.

15.4 CH1 to CH64 Input Over-Voltage Protection

The LX7730 is designed for cold redundancy, and the ADC inputs CH 1 to CH 64 can take $\pm 20 \mathrm{~V}$ with the LX7730 powered off $(\mathrm{VCC}=0 \mathrm{~V})$. This passes the ECSS-E-ST-50-14C's fault voltage tolerance $\left(\mathrm{V}_{\mathrm{rft}}\right)$ specification of $\pm 17.5 \mathrm{~V}$.

With the LX7730 powered on (VCC=12V or 15V usually), positive inputs start to clamp to VCC at about 1V above VCC, and this current must be maintained at no more than 3 mA continuous, 5 mA peak. Negative inputs can still go to -20 V with VCC applied. An over-voltage of up to 1.5 V above VCC is fine, as the input current is kept under 3mA continuous. To meet $\mathrm{V}_{\text {rft }}= \pm 17.5 \mathrm{~V}$ input protection when powered up, either use $\mathrm{VCC}=16 \mathrm{~V}$ or apply a series resistor to each input to be protected, with suitable value to limit the fault current to under 3 mA . For inputs more than 1.5 V above VCC, each input clamp appears as a resistance in the range 325Ω to 850Ω is series with 1.5 V . For example, use 270Ω series resistance with $V C C=15 \mathrm{~V} \pm 5 \%$. To divert input fault currents into GND instead of VCC, use an external clamp circuit (Figure 12). Over-voltage capability is limited by component power ratings. At $\pm 17.5 \mathrm{~V}$, R1 dissipates 25 mW , the Zener's $60 \mathrm{~mW} / 3 \mathrm{~mW}$.

Figure 12. Channel Input Over-Voltage Clamp Circuits

16 Current Source DACs

The LX7730 includes two DACs intended for setting sensor source currents and generating general purpose output currents or voltages:

- A 4-bit DAC that can only be used to set a current source in the nominal range $242.5 \mu \mathrm{~A}$ to $3830 \mu \mathrm{~A}$ which drives a selected multiplexer input for passive sensor stimulation
- A 10-bit DAC that can either:
- Drive a selected multiplexer input with a current source with 31 steps in the nominal range $9.7 \mu \mathrm{~A}$ to $300 \mu \mathrm{~A}$ (in place of the 4-bit DAC), or
- Drive the DAC_P and DAC_N pins as a complementary output DAC with 1023 steps up to nominal full-scale outputs of 0 to 2 mA and 2 to 0 mA respectively. The output currents are typically converted to voltages with external resistors, with a maximum output compliance range of 0 to 3 V . A $1.5 \mathrm{k} \Omega$ resistor to AGND is recommended (as shown in the recommended layout in Section 1 on page 2 for DAC outputs used. This value provides a nominal 3 V maximum at 2 mA full scale. Output glitches on DAC code changes can be smoothed with a 1 nF or higher capacitance fitted in parallel with each resistor. If one of the DAC outputs is not used, the resistor can be replaced by a direct connection to AGND.

16.1 Configuring the 4-Bit DAC

The 4-bit DAC is powered on or off by the Current Source Disable bit D5 in the Function Enable register 1 (Table 17 on page 34). The Current Mux Level register 5 (Table 21 on page 38) configures the 4-bit DAC. See Section 19.6 on page 37 for details. Note that the 4-bit DAC is disabled by default on reset, to avoid driving an inappropriate input.

Digital Interfaces

16.2 Configuring the $10-\mathrm{Bit}$ DAC

The 10-bit DAC is powered on or off by the 10-Bit DAC bit D2 in the Function Enable register 1 (Table 17 on page 34). See Section 0 on page 45 for configuration details in either of the two modes outlined above. Note that to update the DAC, the DAC LSB register 15 is written first. When the DAC MSB register 14 is written, the two LSBs in the DAC LSB register 15 are combined with the eight bits just stored in the DAC MSB register 14. This 10-bit word is used immediately to update the 10-bit DAC.

17 Digital Interfaces

The LX7730 includes a $25 \mathrm{Mword} / \mathrm{s}$ parallel interface and two $12.5 \mathrm{Mbit} / \mathrm{s}$ serial interfaces. All interfaces address the LX7730's full set of 32 internal registers (Table 15 on page 32). Only one interface can be active at a time, selected by the $\overline{\text { SPI_A }}$ and $\overline{\text { SPI_B }}$ input pins. The parallel interface is selected when $\overline{\text { SPI_A }}=\overline{\text { SPI_B }}=1$. One of the serial interfaces is selected by the falling edge of either SPI_A or SPI_B, regardless of the level of the other signal (Table 11). In this way, each serial interface offers full redundancy against a dead connection (stuck in any state) from the other serial interface.

$\overline{\text { SPI_B }}$	$\overline{\text { SPI_A }}$	Interface Selection
1	1	Parallel
0 or 1	$1 \downarrow 0$	SPI_A selected; current parallel or serial transmission aborted
$0 \uparrow 1$	0	SPI_A remains selected
1	0	SPI_B selected; current parallel or serial transmission aborted
$1 \downarrow 0$	0 or 1	SPI
0	$0 \uparrow 1$	SPI_B remains selected
0	1	

Table 11. Parallel and Serial Interface Selection Logic

17.1 Using the Parallel Interface

The parallel interface is selected by setting the inputs $\overline{S P I _A}=1$ and $\overline{S P I _B}=1$. The parallel interface uses 5 register address pins A0 to A4, the 8 data pins D0 to D7, an active-low chip enable pin $\overline{C E}$ for reading and writing registers, and an active-low write enable pin $\overline{W E}$ for writing registers. The PTY and ACK pins provide mandatory data validation for every write (Table 12 on page 29). The LX7730 performs an even parity check on the 14-bit combination of the 5 address signals A0 to A4, the 8 data signals, and PTY itself. Parity is correct if there are an even number of 1s in this 14-bit word.

When the parallel bus is idle, the chip enable $\overline{C E}$, output enable $\overline{O E}$, and write enable $\overline{W E}$ are inactive high. Multiple devices may share the same address and data bus by providing individual $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ lines for each device.

Pin Name	Direction	Description	Function for Read	Function for Write
$\overline{\mathrm{CE}}$	Input	Active low chip enable	Low	Low
$\overline{\overline{O E}}$	Input	Active low output enable for read	High	High
$\overline{\mathrm{WE}}$	Input	Active low write enable	Register to read	Register to write
A0 - A4	Input	Register address bit A0 (LSB) to A4 (MSB)	Data from LX7730	Data to LX7730
D0 - D7	I/O	Data byte D0 (LSB) to D7 (MSB)	Parity bit to LX7730	
PTY	I/O	Even parity bit (even number of 1s) for the combined address (A0 - A4), data (D0 - D7) bits, and the PTY signal. A write parity error sets the $\overline{\text { ACK }}$ output high	Parity bit from LX7730	Parity
$\overline{\mathrm{ACK}}$	Output	Data write acknowledge output. $\overline{\text { ACK is active low to }}$ validate a data write to LX7730 (indicate no parity error)		Parity $\overline{\text { pass/fail }}$

Table 12. Parallel Interface Selected by $\left[\overline{S P I _A}=1\right.$ and $\left.\overline{S P I _B}=1\right]$

17.1.1 Writing the LX7730 through the Parallel Interface

To write data to a register, $\overline{\mathrm{OE}}$ remains high. In any desired sequence take $\overline{\mathrm{CE}}$ low and set the desired register address A0-A4, data byte D0-D7, and parity bit PTY. Within 20ns of these signals stabilizing, the $\overline{A C K}$ output will go low to indicate that the parity check has passed. Pulse $\overline{\mathrm{WE}}$ low for at least 15 ns to latch the data into the register addressed (Figure 13). If the $\overline{\mathrm{ACK}}$ output is high (parity error) when $\overline{\mathrm{WE}}$ is pulsed low, then the data will not be latched into the LX7730. When writing multiple registers in a sequence, leave $\overline{C E}$ low for the duration of the repeated writes.

17.1.2 Reading the LX7730 through the Parallel Interface

To read data from a register, $\overline{\text { WE }}$ remains high. In any desired sequence take $\overline{C E}$ low and set the desired register address A0 - A4 to be read. 10ns minimum after these signals stabilizing, pulse OE low for at least 30 ns to transfer the register's data to the data pins D0-D7 (Figure 13). The data byte and parity bit will be valid within 10ns. When reading multiple registers in a sequence, leave $\overline{\mathrm{CE}}$ low for the duration of the repeated reads.

Figure 13. Parallel Data Timing for Successive Parallel Data Reads and Successive Parallel Data Writes

17.2 Using the Serial Interfaces

Serial interface A is selected by setting the inputs SPI_A $=0$ and SPI_B $=1$ (Table 14 below). Serial interface B is selected by setting the inputs SPI_A =1 and SPI_B $=\overline{0}$ (Table 14 on page 31). The serial interface packs a R/W bit, the 5 register address bits A 4 to A 0 , the 8 data bits D 7 to DO , and a parity bit P into a 15 -bit word in that order. The parity bit provides mandatory data validation for every write. The LX7730 performs an even parity check on this 15 -bit word. Parity is correct if there are an even number of 1 s in the word. Figure 14 shows the serial write timing diagram.

Note that an SPI transaction must be exactly 15 bits long between $\overline{\text { SSA }}$ or $\overline{\text { SSB }}$ falling at the start of the transaction and rising again at the end. The serial interface does not simply retain and process the last 15 bits of a transmission. Instead, the LX7730 decodes each transmission on the fly, and so arbitrary length transmissions cannot be accepted.

Figure 15 and Figure 16 show the serial read timing. Use an 80 ns minimum CLKA and CLKB period (12.5 MHz), with 32 ns minimum high time and 10 ns minimum low time. Setup/hold time on MOSI is $10 \mathrm{~ns} / \mathrm{Ons}$ before/after the rising edge of CLKx reaches logic 1. Data is valid on MISO 10ns after the falling edge of CLKx reaches logic 0 , and should be sampled on the subsequent rising edge of CLKx.

Multiple devices may share the same serial B bus by providing individual $\overline{S P I _B}$ lines for each device, and routing the $\overline{\text { SSB }}, \mathrm{CLKB}, \mathrm{MOSI}$ B, MISO_B as common signals to all devices. All device SPI_A inputs remain high. When the bus is idle, all individual SPI_B inputs and SSB are high. To access a target device using a shared SPI_B port:

1. Set $\overline{S P I _B}=0$ for the target device to select it. The other $\overline{S P I _B ~ i n p u t s ~ r e m a i n ~ h i g h ~}$
2. After a minimum 10 ns , set $\overline{\mathrm{SSB}}=0$
3. Execute the read or write sequence per Figure 14, Figure 15, and Figure 16
4. $\operatorname{Set} \overline{\mathrm{SSB}}=1$
5. To execute another read or write sequence on the same device, continue to step 2 ensuring $\overline{\mathrm{SSB}}=1$ for $\geq 40 \mathrm{~ns}$
6. Otherwise, set $\overline{S P I _B}=1$ so now the shared bus is in ide mode with all $\overline{S S B}$ and individual $\overline{S P I _B}$ inputs high

Allowing multiple devices to share the same serial A bus is also possible, but is more complicated because the bus idle mode described above $\left(\overline{\text { SPI } _}=\overline{\text { SPI_B }}=1\right)$ is also selecting the parallel interface, which shares control lines with the serial A bus. Contact factory for configuration details if sharing serial A bus is required.

Pin Name	SPI channel A interface selected by [$\overline{\mathrm{SPI}}$-A $=0$ and $\overline{\text { SPI_B }}=1$]
SSA	Active low slave select
CLKA	Clock input
MOSI_A	Data input
MISO_A	Data output
$\overline{\text { ACK }}$	Data write acknowledge output. $\overline{\mathrm{ACK}}$ is active low to validate each data write to LX7730 (indicate no parity error). Parity is correct if there are an even number of 1 s in the 15 -bit data transmission, including the parity bit. $\overline{\mathrm{ACK}}$ remains valid until the next falling edge of $\overline{\mathrm{SSA}}$

Table 13. SPI Channel A Interface Selected by [$\overline{\mathrm{SPI} _A}=0$ and $\overline{\text { SPI_B }}=1$]

Pin Name	SPI channel B interface selected by $\left[\overline{S P I _A}=1\right.$ and $\left.\overline{\text { SPI_B }}=0\right]$
$\overline{\text { SSB }}$	Active low slave select
CLKB	Clock input
MOSI_B	Data input
MISO_B	Data output
$\overline{\text { ACK }}$	Data write acknowledge output. $\overline{A C K}$ is active low to validate each data write to LX7730 (indicate no parity error). Parity is correct if there are an even number of 1 s in the 15-bit data transmission, including the parity bit. ACK remains valid until the next falling edge of $\overline{S S B}$

Table 14. SPI Channel B Interface Selected by [$\overline{\mathrm{SPI} A}=1$ and $\overline{\text { SPI_B }}=0$]

Figure 14. Serial Data Write Timing Diagram

Figure 15. Serial Data Read Timing Diagram

Figure 16. Serial Data Read Timing Diagram

18 Register Map

Register	Function	Register Data							
		D7	D6	D5	D4	D3	D2	D1	D0
Normal Operation Registers									
0 (0x00)	Master Reset	0x6A: reset mode. Any other value: normal operation							
1 (0x01)	Function Enable	Chip Enable	Sensor Mux	Current Source Disable	Bank Bi-Level	Analog Amplifiers	10-Bit DAC	BLI/BLO Bi-Level	12-Bit ADC
2 (0x02)	Power Status	Use IREF2	Monitor VCC	Monitor VEE	Monitor $+5 \mathrm{~V}$	Monitor VREF	VCC LVD	VEE LVD	+5V LVD
3 (0x03)	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Non- Inverting Mux } \\ \text { Channel } \end{array} \\ \hline \end{array}$	-	-	Select Bank [BD2:BD0]			Select Position [PD2:PD0]		
4 (0x04)	Inverting Mux Channel	-	Use SE RTN	Select Bank [BD2:BD0]			Select Position [PD2:PD0]		
5 (0x05)	Current Mux Level	Use IDAC	-	-	-	Double	Set Current		
6 (0x06)	Current Mux Channel	-	-	Select Channel					
7 (0x07)	Signal Conditioning Amplifier	-	Filter Off	2nd Pole Frequency		1st Pole Frequency		Amplifier Gain	
8 (0x08)	ADC Control	Auto Sample Rate Position [S2:S0]			Auto Conv	Data Ready	Busy	Start Conv	$\underset{\mathrm{HiZ}}{\mathrm{ADC}_{2} \mathrm{IN}=}$
9 (0x09)	ADC Result MSB	ADC Result MSB [ADC_D11:ADC_D4]							
10 (0x0A)	ADC Result LSB	0	0	0	0	ADC Result LSB [ADC_D3:ADC_D0]			
11 (0x0B)	8-Bit Bank Bi-Level Comparators Threshold DAC	Threshold DAC [BI_D7:BI_D0]							
12 (0x0C)	8-Bit Bank Bi-Level Comparators Input Selection	$\begin{gathered} \text { Use } \\ \text { BL_TH } \end{gathered}$	-	-	-	EN BL Sw Pos	Select Banks Switch Position		
13 (0x0D)	8-Bit Bank Bi-Level Comparators Output Status	Comparator 7	Comparator 6	Comparator 5	Comparator 4	Comparator 3	Comparator 2	Comparator 1	Comparator 0
14 (0x0E)	10-Bit DAC MSB	DAC Setting MSB [DAC_D9:DAC_D2]							
15 (0x0F)	10-Bit DAC LSB	0	0	0	0	0	0	DAC_D1	DAC_D0
16 (0x10)	Calibration	IA Short	-	-	Cont Check	NP TEST	-	I GND	0
Trim Adjustment and Factory Calibration Registers									
17 (0x11)	OTP	-	-	-	-	-	-	OTP out select	OTP in select
18 (0x12)	Trim 18	cmux[2:0]			vref[4:0]				
19 (0x13)	Trim 19	vbgtc[3:0]				offs[3:0]			
20 (0x14)	Trim 20	vbg[4:0]					vtoi[4:2]		
21 (0x15)	Trim 21	vtoi[1:0]		osc[3:0]				ADCvtoi[4:3]	
22 (0x16)	Trim 22	ADCvtoi[2:0]			-	-	-	-	-
23 (0x17)	Trim 23	Io_dis	-	-	-	-	-	-	-
24 (0x18)	Trim 24 (unused)	-	-	-	-	-	-	-	-
25 (0x19)	Trim 25 (unused)	-	-	-	-	-	-	-	-
Unimplemented Registers									
26 (0x1A)	Writes to these addresses are not stored and reads return 0×00	0	0	0	0	0	0	0	0
27 (0x1B)		0	0	0	0	0	0	0	0
28 (0x1C)		0	0	0	0	0	0	0	0
29 (0x1D)		0	0	0	0	0	0	0	0
30 (0x1E)		0	0	0	0	0	0	0	0
31 (0x1F)		0	0	0	0	0	0	0	0

Note 1: Unused bits marked "-" are implemented but not used, and may be written and read with any values.
Note 2: Unused bits marked "0" are unimplemented. Writes are ignored, and the bits read back as 0.
Table 15. Register Map

19 Register Descriptions

19.1 Register address 0: Master Reset

When the Master Reset register 0 contains 0×6 A, the LX7730 is in reset mode which sets all other registers to the power on reset (POR) state. Writes to the other registers are ignored in reset mode.

Toggling the $\overline{R E S E T}$ pin low then high also releases reset mode by clearing the Master Reset register 0 to 0×00.
See Section 13 on page 19 for operation of the RESET pin.
To perform a reset, first write 0x6A to Master Reset register 0. Then over-write any other value (such as 0xFF) to Master Reset register 0 to restore normal operation and allow register write access.

If Master Reset register 0 is maintained with value $0 x F F$ (or any value except $0 \times 6 \mathrm{~A}$ or 0×00), then the LX7730's fundamental operational status can be checked by reading this register back:

- If Master Reset register $0=0 \times F F$, then the LX7730 has not been reset by either the $\overline{\text { RESET }}$ pin being toggled or a power failure
- If Master Reset register $0=0 \times 00$, then either the LX7730 has been reset by some circumstance, or the power is currently down
- If the Function Enable register 1 (Table 17 on page 34) reads back as 0xFF (the default after a reset event), then the LX7730 has been reset by some circumstance, and the power is up
- If the Function Enable register 1 reads back as 0×00, then it is likely that the LX7730's power is currently down and so the system interface isn't working

Table 16: Register 0: Master Reset

Register Description	Register Address	Register Data							
		D7	D6	D5	D4	D3	D2	D1	D0
Reset LX7730 to Power-On Reset state	$\begin{gathered} 0 \\ 0 \times 00 \end{gathered}$	0	1	1	0	1	0	1	0
Set LX7730 for normal operation		Any value except b'01101010' (0x6A)							
Default register setting on POR or $\overline{\mathrm{RESET}}$		0	0	0	0	0	0	0	0

19.2 Register address 1: Function Enable

The Function Enable register 1 provides the option to disable internal blocks for power saving; See Table 4 on page 18 for typical block operating currents and wakeup times. Clearing the Chip Enable bit D7 = 0 puts the LX7730 into standby mode with typical VCC consumption of 4 mA .

Table 17. Register 1: Function Enable

Register Description	Register Address	Register Data							
		D7	D6	D5	D4	D3	D2	D1	D0
Function Enable register	$\begin{gathered} 1 \\ 0 \times 01 \end{gathered}$	Chip Enable	Sensor Mux	Current Source Disable	Bank Bi-Level	Analog Amplifiers	$\begin{array}{\|c\|} \hline \text { 10-Bit } \\ \text { DAC } \end{array}$	BLI/BLO Bi-Level	$\begin{array}{\|c} \text { 12-Bit } \\ \text { ADC } \end{array}$
Default register setting on POR or $\overline{\text { RESET }}$		1	1	1	1	1	1	1	1
12-Bit ADC powered down The $\mathrm{CH} 1-\mathrm{CH} 64$ inputs, instrumentation amplifier, antialias filter, multiplexer bank bi-level comparators, BLI/BLO bi-level comparator inputs are unaffected. Output of analog front end is available at the ADC_IN pin for acquisition by external ADC	$\begin{gathered} 1 \\ 0 \times 01 \end{gathered}$	1	x	x	x	x	x	X	0
12-Bit ADC enabled									1
BLI/BLO Bi-Level Comparators powered down BLI1-8 are Hi-Z. The multiplexer bank bi-level comparators are unaffected		1	X	X	x	x	x	0	x
BLI/BLO Bi-Level Comparators enabled								1	
10-bit DAC powered down DAC_P \& DAC_N outputs are Hi-Z 10-bit DAC enabled		1	x	x	x	x	0	x	x
10-bit DAC enabled							1		
Instrumentation Amplifier powered down The instrumentation amplifier driving the anti-alias filter is powered down, so multiplexer inputs will not reach the ADC. The multiplexer bank bi-level comparators are not affected. The ADC can acquire an external signal on the ADC_IN pin after powering down the anti-alias filter by setting Signal Conditioning Amplifier register 7-bit D6 (Table 23 on page 39)		1	x	X	x	0	x	x	x
Instrumentation Amplifier enabled						1			
Bank Bi-Level Comparators powered down The multiplexer bank bi-level comparators are disabled. $\mathrm{CH} 1-\mathrm{CH} 64$ inputs, ADC, BLI/BLO bi-level comparator are unaffected Bank Bi-Level Comparators enabled		1	x 1	x	0 1	x	x	x	x
Multiplexer Current Source enabled The current source is selected and configured by the Current Mux Level register 5 (Table 21 on page 38). The current source is directed to the input channel CH1 to CH64 selected by the Current Mux Channel Selection register 6 (Table 22 on page 39)		1	x	0	x	x	x	x	x
Multiplexer Current Source powered down The 10-bit DAC may still be used to drive its DAC_P \& DAC_N outputs if enabled by setting bit D2 = 1 and clearing bit D7 $=0$ in the Current Mux Level register 5 (Table 21 on page 38)				1					
CH1-CH64 Multiplexer powered down (disabling Multiplexer Bank Bi-Level Comparators also) $\mathrm{CH} 1-\mathrm{CH} 64$ inputs are $\mathrm{Hi}-\mathrm{Z}$. The BLI/BLO bi-level comparator inputs are unaffected		1	0	x	x (0 saves power)	x	x	x	x
CH1-CH64 Multiplexer enabled			1		x				
Standby mode Digital interface is operational. CH1-CH64 \& BLI1- BLI8 inputs, and DAC_N \& DAC_P outputs are Hi-Z		0	x	x	x	x	x	x	x
Operating mode The LX7730 is in normal operation, with optional analog blocks disabled per the [D6-D0] settings. Typical wakeup time from sleep mode is $333 \mu \mathrm{~s}$		1	Select which analog blocks are operational. See Table 4 on page 18 and Table 5 on page 19 for typical block operating currents and wakeup times						

19.3 Register address 2: Power Status

The Power Status register 2 provides the option to check for a LVD condition or to monitor the power rails. There is also a bit for selection of the redundant IREF pin.

The Monitor VCC, Monitor VEE, Monitor +5 V , and Monitor VREF bits [D6:D3] can be used to route one of these 4 power supply voltages, with attenuation, directly to the ADC. This over-rides the settings of both the Non-Inverting Mux Channel Select register 3 (Table 19 on page 36) and the Inverting Mux Channel Select register 4 (Table 20 on page 37).

When selecting Monitor VREF, note that when VREF is also being used as the reference for the ADC, then the ADC result will be ratiometric. After setting the signal conditioning amplifier gain to 0.4 (Table 23 on page 39), the Monitor VREF signal will appear at the ADC input as ($0.4 \times$ VREF/2). Since the internal reference to the ADC is ($0.4 \times$ VREF $=$ 2 V), the ADC conversion will always appear as nominally half-scale (0×800). In this case, VREF must be monitored relative to a known external voltage such as VCC.

The Calibration register 16 (Table 33 on page 48) offers more over-rides to the instrumentation amplifier inputs. However, bits [D6:D3] in register 2 below have priority over Calibration register settings.

Table 18: Register 2: Power Status

19.4 Register address 3: Non-Inverting Mux Channel Select

The Non-Inverting Mux Channel Select register 3 selects which of the inputs CH 1 to CH 64 is routed by the analog multiplexer to the non-inverting input of the instrumentation amplifier.

The [BD2:BD0] and [PD2:PD0] bits select an input channel. The 3 bits [BD2:BD0] select a multiplexer bank, and the 3 bits [PD2:PD0] select a multiplexer position. The bank and position select corresponds to channel number CH1-CH64 according to the following equation:

CHANNEL $=[$ BD2 : BD0] $+(8 \times[$ PD2 : PD0] $)+1$

Equation 2. Multiplexer Input Channel Selection

The setting in this register is ignored (over-ridden) by any of the following settings:

- One or more of the 4-bits [D6:D3] in the Power Status register 2 is set. These settings monitor the VREF, $+5 \mathrm{~V}, \mathrm{VEE}$, and VCC rails. See Table 18 above
- Either or both of the 2 bits D4 and D3 in the Calibration register 16 is set. These settings are used for testing and calibration. See Table 33 on page 48

Table 19: Register 3: Non-Inverting Mux Channel Select

Register Description	Register Address	Register Data							
		D7	D6	D5	D4	D3	D2	D1	D0
Non-Inverting Mux Channel Select register	$\begin{gathered} 3 \\ 0 \times 03 \end{gathered}$	-	-	BD2	BD1	BD0	PD2	PD1	PD0
Default register setting on POR or $\overline{\text { RESET }}$		0	0	0	0	0	0	0	0
The instrumentation amplifier's non-inverting input is routed from one of channel $\mathrm{CH} 1-\mathrm{CH} 64$ selected by the equation: CHANNEL $=[$ BD2 : BD0] $+(8 \times[\mathrm{PD} 2: \mathrm{PD} 0])+1$	$\begin{gathered} 3 \\ 0 \times 03 \end{gathered}$	x	x	BD2	BD1	BD0	PD2	PD1	PD0
Selected channel is [0] + $8 \times \mathrm{X} 0])+1=\mathrm{CH} 1$		X	x $0 / 1$	0	0	0	0	0	0
Selected channel is [1] + (8X [0]) + $1=\mathrm{CH} 2$				0	0	1	0	0	0
Selected channel is [2] + (8X [0]) $+1=\mathrm{CH} 3$				0	1	0	0	0	0
Selected channel is [3] + (8X[0]) $+1=\mathrm{CH} 4$				0	1	1	0	0	0
Selected channel is [4] + (8X [0]) $+1=\mathrm{CH} 5$				1	0	0	0	0	0
Selected channel is [5] + (8X [0]) + $1=\mathrm{CH} 6$				1	0	1	0	0	0
Selected channel is [6] + (8X [0]) + $1=\mathrm{CH} 7$				1	1	0	0	0	0
Selected channel is [7] + 8 X [0]) + $1=\mathrm{CH} 8$				1	1	1	0	0	0
Selected channel is [0] + (8 X [1]) + $1=\mathrm{CH} 9$				0	0	0	0	0	1
... and so on and so on ..					
Selected channel is [7] + (8 X [6]) + 1 = CH56				1	1	1	1	1	0
Selected channel is [0] + (8 X [7]) + 1 = CH57				0	0	0	1	1	1
Selected channel is [1] + 8 X [7]) + 1 = CH58				0	0	1	1	1	1
Selected channel is [2] + 8 X [7]) $+1=\mathrm{CH} 59$				0	1	0	1	1	1
Selected channel is [3] + 8 X [7]) + $1=\mathrm{CH60}$				0	1	1	1	1	1
Selected channel is [4] + 8 X [7]) + 1 = CH61				1	0	0	1	1	1
Selected channel is [5] + (8 X [7]) + 1 = CH62				1	0	1	1	1	1
Selected channel is [6] + (8 X [7]) $+1=\mathrm{CH63}$				1	1	0	1	1	1
Selected channel is [7] + (8 X [7]) $+1=\mathrm{CH} 64$				1	1	1	1	1	1
Unused register bits. Values written are stored and read back		0/1		X	X	X	X	X	X

19.5 Register address 4: Inverting Mux Channel Select

The Inverting Mux Channel Select register 4 selects which of one the inputs CH1 to CH64 or the SE_RTN pin is routed by the analog multiplexer to the inverting input of the instrumentation amplifier.

If the Use SE_RTN bit D6 is 0 , then the [BD2:BD0] and [PD2:PD0] bits select an input channel. The 3 bits [BD2:BD0] select a multiplexer bank, and the 3 bits [PD2:PD0] select a multiplexer position. The bank and position select corresponds to channel number $\mathrm{CH} 1-\mathrm{CH} 64$ according to the following expression:

CHANNEL $=[B D 2: ~ B D 0]+(8 \times[P D 2: P D 0])+1$

Equation 3. Multiplexer Input Channel Selection

If the Use SE_RTN bit D6 is 1 , then the [BD2:BD0] and [PD2:PD0] bits are ignored, and the inverting input of the instrumentation amplifier is connected to the voltage on the SE_RTN pin. The SE_RTN pin allows a remote ground point that is common to multiple single ended inputs to be used as a signal reference without sacrificing one of the 64 multiplexer inputs.

The setting in this register is ignored (over-ridden) by any of the following settings:

- One of more of the 4-bits [D6:D3] in the Power Status register 2 is set. These settings monitor the VREF, $+5 \mathrm{~V}, \mathrm{VEE}$, and VCC rails. See Table 18 on page 35
- Either or both of the 2 bits D7 and D4 in the Calibration register 16 is set. These settings are used for testing and calibration. See Table 33 on page 48
- Setting the D1 bit in the Calibration register 16 causes the inverting input of the instrumentation amplifier to be connected to AGND. This provides a convenient ground connection for local single ended inputs without using the SE_RTN pin. See Table 32 on page 48

Table 20: Register 4: Inverting Mux Channel Select

Register Description	Register Address	Register Data							
		D7	D6	D5	D4	D3	D2	D1	D0
Inverting Mux Channel Select register	$\begin{gathered} 4 \\ 0 \times 05 \end{gathered}$	-	Use SE RTN	BD2	BD1	BD0	PD2	PD1	PD0
Default register setting on POR or $\overline{\mathrm{RESET}}$		0	0	0	0	0	0	0	0
The instrumentation amplifier's inverting input is routed from one of channel $\mathrm{CH} 1-\mathrm{CH} 64$ selected by the equation: CHANNEL $=[$ BD2 : BD0] $+(8 \times[$ PD2 : PD0 $])+1$	$\begin{gathered} 4 \\ 0 \times 04 \end{gathered}$	x	0	BD2	BD1	BD0	PD2	PD1	PD0
Selected channel is [0] + (8 X [0]) + $1=\mathrm{CH} 1$		X	0	0	0	0	0	0	0
Selected channel is [1] + (8X [0]) + 1 = CH2				0	0	1	0	0	0
Selected channel is [2] + (8X [0]) $+1=\mathrm{CH} 3$				0	1	0	0	0	0
Selected channel is [3] + (8X [0]) $+1=\mathrm{CH} 4$				0	1	1	0	0	0
Selected channel is [4] + $8 \times[0]$) $+1=\mathrm{CH} 5$				1	0	0	0	0	0
Selected channel is [5] + (8X[0]) + $1=\mathrm{CH} 6$				1	0	1	0	0	0
Selected channel is [6] + (8X [0]) + $1=\mathrm{CH} 7$				1	1	0	0	0	0
Selected channel is [7] + (8X [0]) $+1=\mathrm{CH} 8$				1	1	1	0	0	0
Selected channel is [0] + (8 X [1]) $+1=\mathrm{CH} 9$				0	0	0	0	0	1
... and so on and so on ...					
Selected channel is [7] + (8 X [6]) + 1 = CH56				1	1	1	1	1	0
Selected channel is [0] + 8 X [7]) + $1=\mathrm{CH} 57$				0	0	0	1	1	1
Selected channel is [1] + $8 \times \mathrm{X}$ [7]) $+1=\mathrm{CH} 58$				0	0	1	1	1	1
Selected channel is [2] + (8X[7]) $+1=\mathrm{CH} 59$				0	1	0	1	1	1
Selected channel is [3] + 8 X [7]) + 1 = CH60				0	1	1	1	1	1
Selected channel is [4] + 8 X [7]) + 1 = CH61				1	0	0	1	1	1
Selected channel is [5] + (8 X [7]) $+1=\mathrm{CH} 62$				1	0	1	1	1	1
Selected channel is [6] + (8X [7]) $+1=\mathrm{CH} 63$				1	1	0	1	1	1
Selected channel is [7] + (8 X [7]) $+1=\mathrm{CH64}$				1	1	1	1	1	1
The instrumentation amplifier's inverting input is routed from the SE_RTN pin		X	1	x	X	x	x	x	x
Unused register bit. Value written is stored and reads back		0/1	X	X	x	X	X	X	X

19.6 Register address 5: Current Mux Level

The Current Mux Level register 5 sets the current in the 4-bit IDAC multiplexer current source. The Double bit D3 selects between low and high ranges. When the Double bit $\mathrm{D} 3=1$, the current set by bits [D2:D0] is doubled. From the Electrical Characteristics table, the current (including tolerances for both full scale current and DAC INL) follows the expressions in Equation 4 below:

Double bit D3 $=0$: Multiplexor Current $=\{([\mathrm{D} 2: \mathrm{D} 0]+1) / 8 \times(1940 \mu \mathrm{~A} \pm 60 \mu \mathrm{~A})\} \pm 7.5 \mu \mathrm{~A}$
Double bit D3 = 1: Multiplexor Current $=\{([\mathrm{D} 2: \mathrm{D} 0]+1) / 8 \times(3830 \mu \mathrm{~A} \pm 120 \mu \mathrm{~A})\} \pm 15 \mu \mathrm{~A}$
Equation 4. 4-bit IDAC Multiplexer Current Source Transfer Characteristic
Example 1: Double bit D3 $=0,[D 2: D 0]=011$
Multiplexor Current $=\{([3]+1) / 8 \times(1940 \mu \mathrm{~A} \pm 60 \mu \mathrm{~A})\} \pm 7.5 \mu \mathrm{~A}=970 \mu \mathrm{~A} \pm 30 \mu \mathrm{~A} \pm 7.5 \mu \mathrm{~A}=970 \mu \mathrm{~A} \pm 37.5 \mu \mathrm{~A}$
Example 2: Double bit D3 = 1, [D2:D0] = 001
Multiplexor Current $=\{(1]+1) / 8 \times(3830 \mu \mathrm{~A} \pm 120 \mu \mathrm{~A})\} \pm 15 \mu \mathrm{~A}=957.5 \mu \mathrm{~A} \pm 30 \mu \mathrm{~A} \pm 15 \mu \mathrm{~A}=957.5 \mu \mathrm{~A} \pm 45 \mu \mathrm{~A}$
Table 21 on page 38 shows the programmed current (with tolerances) for all 16 options, in the order of increasing current.
The 10-bit DAC may be used as the input channel multiplexer instead of the IDAC by setting Use IDAC bit D7 = 1 (Table 21 on page 38). When assigned as the internal multiplexer current source, the 10 -bit DAC is configured as 5 -bit programmable current source in the range 0 to $300 \mu \mathrm{~A}$. See Table 31 on page 47 for 10 -bit DAC configuration in this mode.

When Use IDAC bit D7 = 0 , the 10 -bit DAC is available as a general-purpose DAC, with complementary outputs on the DAC_P output pin and the DAC_N output pin. See Table 30 on page 46 for 10-bit DAC configuration in this mode.

Table 21: Register 5: Current Mux Level

19.7 Register address 6: Current Mux Channel Selection

The Current Mux Select register 6 selects which one of the 64 input channels $\mathrm{CH} 1-\mathrm{CH} 64$ that the selected multiplexer current source is routed to.

To apply a current source to an input channel:

- First select which input channel that the selected multiplexer current source is routed to using the Current Mux Select register 6 (Table 22 on page 39)
- Enable the current source circuitry by clearing Current Source Disable bit D5 $=0$ in the Function Enable register 1 (Table 17 on page 18)
- Configure the Current Mux Level register 5 (Table 21 above)
- To use the 4-bit IDAC current source, clear Use IDAC bit D7 $=0$, and select the desired current level with the remaining bits
- To use the 10-bit DAC as the multiplexer current source instead of the IDAC, set Use IDAC bit D7 $=1$, and select the desired multiplexer current level using the 10-bit DAC registers 14 and 15 (Table 31 on page 47)

To disable current sourcing to any multiplexer input channel, either:

- Disable the current source circuitry by setting Current Source Disable bit D5 $=1$ in the Function Enable register 1 (Table 17 on page 18), or
- Set the programmed multiplexer source current to $0 \mu \mathrm{~A}$ by
- Selecting the 10 -bit DAC as the multiplexer current source by writing 0×80 to the Current Mux Level register 5 (Table 21 above), and
- Setting the 10 -bit DAC current to $0 \mu A$ by first writing $0 x 00$ to the 10 -bit DAC LSB register 15 , and then writing 0×00 to the 10 -bit DAC MSB register 14 (Table 31 on page 47)

Table 22: Register 6: Current Mux Channel Selection

Register Description	Register Address	Register Data							
		D7	D6	D5	D4	D3	D2	D1	D0
Current Mux Channel register	6	-	-	D5	D4	D3	D2	D1	D0
Default register setting on POR or $\overline{\text { RESET }}$	0x06	0	0	0	0	0	0	0	0
Selected channel for current source is CH1-CH64 is [D5:D0] + 1	$\begin{gathered} 6 \\ 0 \times 06 \end{gathered}$	-	-	D5	D4	D3	D2	D1	D0
Selected channel for current source is CH 1		X	x	0	0	0	0	0	0
Selected channel for current source is CH 2				0	0	0	0	0	1
Selected channel for current source is CH 3				0	0	0	0	1	0
... and so on ...				and so on					
Selected channel for current source is CH62				1	1	1	1	0	1
Selected channel for current source is CH63				1	1	1	1	1	0
Selected channel for current source is CH64				1	1	1	1	1	1
Unused register bits. Values written are stored and read back		0/1	0/1	x	x	x	X	x	X

19.8 Register address 7: Signal Conditioning Amplifier

The Signal Conditioning Amplifier register 7 controls a programmable gain amplifier and a pair of cascaded single pole low pass anti-alias filters. These stages sit in the signal chain between the instrumentation amplifier output and the ADC input.

The signal conditioning amplifier is enabled by setting Filter Off bit D6 $=0$, in which case the amplifier's output (which is the final input to the ADC) appears at the ADC_IN pin. The signal at ADC_IN can be monitored by external circuitry if desired, such as by a second ADC for redundancy.

To use the ADC directly without any of the analog front end (multiplexer, current source, instrumentation amplifier, gain, filters), disable the signal conditioning amplifier by setting Filter Off bit D6 $=1$. This configures the final amplifier's output to Hi-Z, allowing the ADC_IN pin to be driven by an external 0 V to 2 V input voltage.

The two 1-pole anti-alias filters are independent. They can be set to the same or different cutoff frequencies depending on the response desired.

Table 23: Register 7: Signal Conditioning Amplifier

Register Description	Register Address	Register Data							
		D7	D6	D5	D4	D3	D2	D1	D0
Signal Conditioning Amplifier register	$\begin{gathered} 7 \\ 0 \times 07 \end{gathered}$	-	Filter Off	2nd Pole Frequency		1st Pole Frequency		Amplifier Gain	
Default register setting on POR or $\overline{\text { RESET }}$		0	0	0	0	0	0	0	0
Signal conditioning amplifier gain is 0.4 A 5V signal at the multiplexer covers the 2V ADC input range	$\begin{gathered} 7 \\ 0 \times 07 \end{gathered}$	x	0	x	x	x	x	0	0
Signal conditioning amplifier gain is 2 A 1V signal at the multiplexer covers the 2V ADC input range		x	0	x	X	x	x	0	1
Signal conditioning amplifier gain is 10		x	0	X	X	X	X	1	0
A 200 mV signal at the multiplexer covers the 2V ADC input range		x	0	X	X	x	X	1	1
1st single pole low pass anti-alias filter cutoff frequency is 400 Hz		x	0	X	X	0	0	x	x
1st single pole low pass anti-alias filter cutoff frequency is 2 kHz		x	0	x	X	0	1	x	x
1st single pole low pass anti-alias filter cutoff frequency is 10 kHz		x	0	X	X	1	0	X	X
Factory test setting. Do not use		x	0	x	X	1	1	x	x
2nd single pole low pass anti-alias filter cutoff frequency is 400 Hz		x	0	0	0	X	X	X	x
2nd single pole low pass anti-alias filter cutoff frequency is 2 kHz		X	0	0	1	x	X	x	x
2nd single pole low pass anti-alias filter cutoff frequency is 10 kHz		x	0	1	0	x	X	X	x
Factory test setting. Do not use		x	0	1	1	x	x	x	x
Analog front end is enabled and drives the ADC_IN pin as an output with the final signal that is available to be acquired by the internal ADC		x	0	x	x	x	x	x	X
Analog front end is disabled. The ADC_IN pin is an input. Apply an external $0 V$ to 2 V input voltage at the $\overline{\mathrm{ADC}} \mathrm{IN}$ pin for ADC acquisition		x	1	x	x	x	x	x	X
Unused register bit. Value written is stored and read back		0/1	X	X	X	X	X	X	x

19.9 Register address 8: ADC Control

The ADC Control register 8 initiates a single ADC conversion or configures auto-conversion, and allows conversion status to be monitored (Table 24). Note that the Data Ready bit D3 is simply the inverse of the Busy bit D2.

The ADC Control register 8 comprises:

- Four latched bits D7 to D4 that are written by the user to configure single- or auto-conversion,
- Two status bits D3 and D2 that change with timing of the ADC's state machine, and
- The Start Conv bit D1 which operates as both a user command to start an ADC conversion on write, and a status bit controlled by the ADC's state machine on read

Table 24: Register 8: ADC Control

Register Description	Register Address	Register Data							
		D7	D6	D5	D4	D3	D2	D1	D0
ADC Control register	$\begin{gathered} 8 \\ 0 \times 08 \end{gathered}$	Auto Sample Rate [S2:S0]			Auto Conv	Data Ready	Busy	Start Conv	0
Default register setting on POR or RESET		0	0	0	0	0	0	0	0
Leave this bit cleared to 0 to enable the gain and filter stages	$\begin{gathered} 8 \\ 0 \times 08 \end{gathered}$	X	X	X	X	X	X	X	0
Start a single-shot ADC conversion		X	X	X	0	X	X	1	0
Read status: the ADC is performing a single-shot conversion						0	1		
Read status: the ADC is not performing a conversion. The most recent conversion result is available in the ADC Result MSB and LSB registers 9 and 10 (Table 25 on page 42)		X	x	x	0	1	0	x	0
Read status: the ADC has performing a continuous conversion						0	1		
Read status: the ADC has finished a continuous conversion and is waiting to start another conversion					1	1	0	x	0
Stop ADC auto-conversions at the end of the current conversion		X	X	X	0	X	X	0	0
Start ADC auto-conversions at sample rate set by [S2:S0]		Set rate			1	X	X	0	0
ADC sample rate $=$ CLK / 40, so 12500 conversions/s at CLK $=500 \mathrm{kHz}$		0	0	0					
ADC sample rate $=$ CLK / 95, so 5263 conversions/s at CLK $=500 \mathrm{kHz}$		0	0	1					
ADC sample rate $=$ CLK / 205, so 2439 conversions/s at CLK $=500 \mathrm{kHz}$		0	1	0					
ADC sample rate $=$ CLK / 425, so 1176 conversions/s at CLK $=500 \mathrm{kHz}$		0	1	1					
ADC sample rate $=$ CLK $/ 865$, so 578 conversions/s at CLK $=500 \mathrm{kHz}$		1	0	0					
ADC sample rate = CLK / 1745, so 286 conversions/s at CLK $=500 \mathrm{kHz}$		1	0	,					
ADC sample rate $=$ CLK / 3505, so 142 conversions/s at CLK $=500 \mathrm{kHz}$		1	1	0					
ADC sample rate $=$ CLK $/ 7025$, so 71 conversions/s at CLK $=500 \mathrm{kHz}$		1	1	1					

The ADC's state machine timing is shown in Figure 17 below. A conversion is initiated by writing ADC Control register 8 setting either the Start Conv bit D1=1 for a single conversion, or the Auto Conv bit D4=1 for continuous conversions. The conversion starts on the subsequent rising edge of CLK.

The ADC_DAC_OUT pin is the output of the ADC's internal SAR DAC. This pin should not be loaded in production (just fitted with $\mathrm{R}_{\text {ADC_DAC_out }}$ per Table 3 on page 18), but provides a useful output for debugging ADC operation.

Figure 17. ADC Conversion Timing
The ADC samples the input for 25 CLK periods, and then converts the sampled value for the next 12 CLK periods. The Data Ready bit is set by the rising edge of the 38th CLK, and the ADC result is valid in the ADC Result MSB and LSB registers 9 and 10 (Table 25 on page 42) after the 39th CLK rising edge. Until the 39th CLK rising edge, ADC Result MSB and LSB registers 9 and 10 retain the result of the previous acquisition.

Some notes to consider when planning acquisition timing:

- The ADC's state machine operates from the CLK pin (125 kHz to 500 kHz). The lower limit of 125 kHz is not a hard limit, but an issue of increasing INL due to leakage in the sample/hold capacitor. See Table 3 on page 18 for details. ADC analog performance (offset and gain error, INL, DNL) is guaranteed in the Electrical Characteristics table at 500 kHz
- CLK is typically operated continuously, but it may be halted in either low or high state between conversions
- At the earliest, halt CLK after its 39th rising edge (leaving CLK high) or subsequent falling edge (leaving CLK low) in the case of a single conversion
- ADC Control register 8 can be written with CLK halted, and CLK started when desired
- After writing ADC Control register 8 with a Start Conv or Auto Conv command, a read of ADC Control register 8 before the first subsequent rising edge of CLK will cause the Start Conv command or Auto Conv to be cancelled
- The rising edge of the 25th CLK is the instant that the sample/hold aperture closes and the analog input is stored
- Start Conv bit D1 in ADC Control register 8 is also cleared by the 25th CLK rising edge
- The input multiplexor and current source can be switched to another input any time after the 25th CLK rising edge without affecting the conversion underway. This allows 14 CLKs ($28 \mu \mathrm{~s}$ with a 500 kHz CLK) settling time for the next ADC input selection
- For fastest sequential acquisitions, write ADC Control register 8 with a Start Conv command during the 39th CLK period. The current ADC result will be available for the first 38 CLK periods of this new conversion, and so can read from ADC Result MSB and LSB resisters 9 and 10 after starting the new conversion
- The ADC state machine is reset by the Power On Enable block (Section 13.1 on page 19) on power-up. It is not, however, reset by either the RESET pin or via the Master Reset register 0 . If the LX7720 is reset this way after power up, any ADC conversion underway will continue through completion. If the external ADC CLK source is halted by this reset event, be aware that up to 38 CLK periods will be required to complete this ADC conversion before a new one can be initiated.

19.9.1 Single-Shot ADC Conversion

To start a single conversion, set the Start Conv bit D1 by writing ADC Control register 8 with 0×02.

- In parallel interface mode, the Start Conv command is recognized by the ADC state machine at the falling edge of $\overline{\mathrm{WE}}$
- In SPI mode, the Start Conv command is recognized at the rising edge of $\overline{\mathrm{SSA}}$ or $\overline{\mathrm{SSB}}$

The Start Conv command is latched into the ADC state machine by the next rising edge of CLK (Figure 18). If ADC Control register 8 is read before the next rising edge of CLK, then the Start Conv command is cancelled. If ADC activity is to be monitored by polling ADC Control register 8, be sure to either monitor CLK or wait at least a CLK period between starting a conversion and reading register 8.

Figure 18. Single Conversion Timing
ADC Control register 8 bits D3 to D1 are not implemented as latched interface register bits, but represent real-time states within the ADC's state machine. The asynchronous nature of read and write access to ADC Control register 8 with respect to the ADC's state machine gives rise to small differences between behaviors when controlled by the parallel or a serial interface.

ADC Control register 8 Start Conv bit D1 is cleared the ADC's state machine on the 25th rising edge of CLK after writing ADC Control register 8 with 0x02. ADC Control register 8 Data Ready bit D3 and Busy bit D2 are toggled by the ADC's state machine on the 38th rising edge of CLK (Figure 18).

Since the status change of bits D3 to D1 are asynchronous to register reads through the parallel or serial interface, changes may occur mid-read. With the serial interface, this will appear as a parity error. A re-read will provide the correct status. With the parallel interface, the data bus and parity bit during a read $(\overline{\mathrm{OE}}=0)$ will show any bit changes transparently during the read.

19.9.2 Continuous (Auto) ADC Conversions

To start continuous conversions, set the Auto Conv bit D4 by writing ADC Control register 8 with a value from 0×10 to 0xF0 according to the sample rate desired (Table 24). The bits S2 to S0 in ADC Control register 8 select the sample rate. ADC continuous conversions are stored in the ADC Result MSB and LSB registers 9 and 10 until the next conversion is ready, and then overwritten. The sample rate follows Equation 5 below. Table 24 shows sample rates for 500 kHz CLK.
ADC sample rate $=\frac{\text { CLK }}{40+\left(55 \times\left[2^{[S 2: S 0]}-1\right]\right)}$ ADC conversions per second

Equation 5. ADC Auto Sample Rate

19.10 Register addresses 9 and 10: ADC Result MSB and LSB

The ADC result MSB register 9 contains the 8 MSBs [ADC _D11: ADC _D4], and the ADC result LSB register 10 contains the 4 LSBs [ADC _D3: ADC _D0] for the last completed 12-bit ADC conversion [ADC _D11: ADC _D0]. The 4 unused bits in the ADC result LSB register always return 0s. The ADC characteristics follow the expressions in Equation 6 below:

Equation 6. ADC Characteristics

Table 25: Register 9 and 10: ADC Result MSB and LSB

Register Description	Register Address	Register Data							
		D7	D6	D5	D4	D3	D2	D1	D0
ADC Result MSB register	$\begin{gathered} 9 \\ 0 \times 09 \end{gathered}$	ADC _D11	ADC _D10	ADC _D9	ADC _D8	ADC _D7	ADC _D6	ADC _D5	ADC _D4
Default register setting on POR or RESET		0	0	0	0	0	0	0	0
ADC Result LSB register	$\begin{gathered} 10 \\ 0 \times 0 \mathrm{~A} \end{gathered}$	0	0	0	0	ADC _D3	ADC _D2	ADC _D1	ADC _D0
Default register setting on POR or $\overline{\text { RESET }}$		0	0	0	0	0	0	0	0

19.11 Register address 11: 8-Bit Bank Bi-Level Comparators Threshold DAC

The 8-Bit Bank Bi-Level Comparators Threshold DAC register sets the 8-bit DAC setting the rising-voltage threshold for the inverting inputs to the 8 bank bi-level comparators (See Table 26 and Table 27 on page 43, Figure 6 on page 22). The bank bi-level comparators are 8 comparators whose non-inverting inputs connect to a selection of the internal multiplexer outputs, and whose outputs are available in a register. The comparators have built in hysteresis, making the fallingvoltage threshold for the inverting inputs typically 112 mV lower than the voltage set by this DAC.

Table 26: Register 11: 8-Bit Bank Bi-Level Comparators Threshold DAC

Register Description		Register Address	Register Data								
		D7	D6	D5	D4	D3	D2	D1	D0		
8-Bit Bank Bi-Level Comparators Threshold DAC register			$\begin{gathered} 11 \\ 0 \times 0 B \end{gathered}$	BI_D7	BI_D6	BI_D5	BI_D4	BI_D3	BI_D2	BI_D1	BI_D0
Default register setting on POR or $\overline{\text { RESET }}$		0		0	0	0	0	0	0	0	
0x00 (0): DAC output is typically 0 V	DAC output precision is not guaranteed in the range 0×00 to 0×13	$\begin{gathered} 11 \\ 0 \times 0 B \end{gathered}$	0	0	0	0	0	0	0	0	
0×01 (1): DAC output is typically 0.02 V			0	0	0	0	0	0	0	1	
... up to up to ...								
0x12 (18): DAC output is typically 0.35 V			0	0	0	1	0	0	1	0	
0x13 (19): DAC output is typically 0.37 V			0	0	0	1	0	0	1	1	
0x14 (20): DAC output is 0.392 V typical ($0.359 \mathrm{~V}-0.426 \mathrm{~V}$)			0	0	0	1	0	1	0	0	
0x15 (21): DAC output is 0.412 V typical ($0.378 \mathrm{~V}-0.446 \mathrm{~V}$)			0	0	0	1	0	1	0	1	
0×16 (22): DAC output is 0.431 V typical ($0.398 \mathrm{~V}-0.465 \mathrm{~V}$)			0	0	0	1	0	1	1	0	
... up to up to ...								
OxEE (238): DAC output is 4.667V typical (4.591V - 4.743V)			1	1	1	0	1	1	1	0	
0xEF (239): DAC output is 4.686 V typical ($4.61 \mathrm{~V}-4.763 \mathrm{~V}$)			1	1	1	0	1	1	1	1	
0xF0 (240): DAC output is 4.706V typical (4.629V-4.783V)			1	1	1	1	0	0	0	0	
0xF1 (241): DAC output is typically 4.73 V ... up to ...	DAC output precision is not guaranteed in the range $0 x F 1-0 x F F$,	1	1	1	0	0	0	1	
			1	1	1	1	0	0	1	0	
			... up to ...								
0xFE (254): DAC output is typically 4.98 V 0xFF (255): DAC output is typically 5 V			1	1	1	1	1	1	1	0	
			1	1	1	1	1	1	1	1	

The bank bi-level comparator non-inverting inputs are configured by register 12 (Table 28 on page 44), and the outputs are available in register 13 (Table 29 on page 44).

There is also an independent set of 8 bi-level comparators called the BLI/BLO comparators whose non-inverting inputs connect to the 8 pins BLI1 to BLI8, and whose outputs connect to the 8 pins BLO1 to BLO8. See section 14.2 on page 20.

The DAC is implemented as a voltage output R-2R ladder. If the Bank bi-level comparators are not used, setting the DAC to 0×00 (which is the condition after a reset) saves a little power.

The DAC is specified for linearity over the code range 0×14 to $0 \times F 0$ (20 to 240), which corresponds to an DAC output voltage range of 0.4 V to 4.7 V . The DAC output voltage over this range follows the expression in Equation 7 below. This includes the $\pm 1 \%$ full scale error, the ± 1 LSB INL, and the $\pm 10 \mathrm{mV}$ offset error). The expression is also valid for values outside this code range, but the precision may be worse.

Bi-Level DAC Output =

$$
\frac{\left(\frac{5 \times 256}{255} \pm 1 \%\right) \times\left(\left\{B L_{_} D 7: B L_{_} D 0\right\} \pm 1\right)}{256} \pm 0.010 \mathrm{~V}
$$

which simplifies to:
Bi-Level DAC Output $=\frac{\left\{B L _D 7: B L _D 0\right\} \pm 1}{51 \pm 1 \%} \pm 0.010 \mathrm{~V}$

Equation 7. 8-Bit Bank Bi-Level Comparators Threshold DAC Transfer Characteristic

Design Example

Desired DAC voltage is 3 V . Using Table 27 on page 43 , the DAC [BL_D7:BL_D0] setting for 3.0 V typical is 0×99, or 153. With that value, the tolerances can be calculated:
Bi-Level DAC Output $(\max)=\frac{\{153\}+1}{51 \times 0.99}+0.010 \mathrm{~V}=3.06 \mathrm{~V}$
Bi-Level DAC Output $(\min)=\frac{\{153\}-1}{51 \times 1.01}-0.010 \mathrm{~V}=2.94 \mathrm{~V}$
Table 27. 8-Bit Bank Bi-Level Comparators Threshold DAC Typical Outputs

Code	$\begin{array}{\|c\|} \hline \text { DAC } \\ \text { Output } \\ \hline \end{array}$	Code	$\begin{gathered} \hline \text { DAC } \\ \text { Output } \\ \hline \end{gathered}$	Code	$\begin{array}{\|c\|} \hline \text { DAC } \\ \text { Output } \\ \hline \end{array}$	Code	$\begin{array}{\|c\|} \hline \text { DAC } \\ \text { Output } \\ \hline \end{array}$	Code	$\begin{array}{\|c\|} \hline \text { DAC } \\ \text { Output } \\ \hline \end{array}$	Code	$\begin{array}{\|c\|} \hline \text { DAC } \\ \text { Output } \\ \hline \end{array}$	Code	$\begin{array}{\|c\|} \hline \text { DAC } \\ \text { Output } \\ \hline \end{array}$	Code	$\begin{array}{\|c\|} \hline \text { DAC } \\ \text { Output } \\ \hline \end{array}$
0x00	0.00V	0x20	0.63 V	0x40	1.25 V	0x60	1.88V	0x80	2.51 V	0xA0	3.14 V	0xC0	3.76 V	0xE0	4.39 V
0x01	0.02 V	0x21	0.65 V	0x41	1.27 V	0x61	1.90 V	0x81	2.53 V	0xA1	3.16 V	0xC1	3.78 V	0xE1	4.41 V
0x02	0.04 V	0x22	0.67 V	0x42	1.29 V	0x62	1.92 V	0x82	2.55 V	0xA2	3.18 V	0xC2	3.80 V	0xE2	4.43 V
0x03	0.06 V	0x23	0.69 V	0x43	1.31 V	0x63	1.94 V	0x83	2.57 V	0xA3	3.20 V	0xC3	3.82 V	0xE3	4.45 V
0x04	0.08 V	0x24	0.71 V	0x44	1.33 V	0x64	1.96 V	0x84	2.59 V	0xA4	3.22 V	0xC4	3.84 V	0xE4	4.47 V
0x05	0.10 V	0x25	0.73 V	0x45	1.35 V	0x65	1.98 V	0x85	2.61 V	0xA5	3.24 V	0xC5	3.86 V	0xE5	4.49 V
0x06	0.12 V	0x26	0.75 V	0x46	1.37 V	0x66	2.00 V	0x86	2.63 V	0xA6	3.25 V	0xC6	3.88 V	0xE6	4.51 V
0x07	0.14 V	0x27	0.76 V	0x47	1.39 V	0x67	2.02 V	0x87	2.65 V	0xA7	3.27 V	0xC7	3.90 V	0xE7	4.53 V
0x08	0.16 V	0x28	0.78 V	0x48	1.41 V	0x68	2.04 V	0x88	2.67 V	0xA8	3.29 V	0xC8	3.92 V	0xE8	4.55 V
0x09	0.18 V	0x29	0.80 V	0x49	1.43 V	0x69	2.06 V	0x89	2.69 V	0xA9	3.31 V	0xC9	3.94 V	0xE9	4.57 V
0x0A	0.20 V	0x2A	0.82 V	0x4A	1.45 V	0x6A	2.08 V	0x8A	2.71 V	0xAA	3.33 V	0xCA	3.96 V	0xEA	4.59 V
0x0B	0.22 V	0x2B	0.84 V	0x4B	1.47 V	0x6B	2.10 V	0x8B	2.73 V	0xAB	3.35 V	0xCB	3.98 V	0xEB	4.61 V
0x0C	0.24 V	0x2C	0.86 V	0x4C	1.49 V	0x6C	2.12 V	0x8C	2.75 V	0xAC	3.37 V	0xCC	4.00 V	0xEC	4.63 V
0x0D	0.25 V	0x2D	0.88 V	0x4D	1.51 V	0x6D	2.14 V	0x8D	2.76 V	OxAD	3.39 V	0xCD	4.02 V	0xED	4.65 V
0x0E	0.27 V	0x2E	0.90 V	0x4E	1.53 V	0x6E	2.16 V	0x8E	2.78 V	0xAE	3.41 V	0xCE	4.04 V	0xEE	4.67 V
0x0F	0.29 V	0x2F	0.92 V	0x4F	1.55 V	0x6F	2.18 V	0x8F	2.80 V	0xAF	3.43 V	0xCF	4.06 V	0xEF	4.69 V
0x10	0.31 V	0x30	0.94 V	0x50	1.57 V	0x70	2.20 V	0x90	2.82 V	0xB0	3.45 V	0xD0	4.08 V	0xF0	4.71 V
0x11	0.33 V	0x31	0.96 V	0x51	1.59 V	0x71	2.22 V	0x91	2.84 V	0xB1	3.47 V	0xD1	4.10 V	0xF1	4.73 V
0x12	0.35 V	0x32	0.98 V	0x52	1.61 V	0x72	2.24 V	0x92	2.86 V	0xB2	3.49 V	0xD2	4.12 V	0xF2	4.75 V
0x13	0.37 V	0x33	1.00 V	0x53	1.63 V	0x73	2.25 V	0x93	2.88 V	0xB3	3.51 V	0xD3	4.14 V	0xF3	4.76 V
0x14	0.39 V	0x34	1.02 V	0x54	1.65 V	0x74	2.27 V	0x94	2.90 V	0xB4	3.53 V	0xD4	4.16 V	0xF4	4.78 V
0x15	0.41 V	0x35	1.04 V	0x55	1.67 V	0x75	2.29 V	0x95	2.92 V	0xB5	3.55 V	0xD5	4.18 V	0xF5	4.80 V
0x16	0.43 V	0x36	1.06 V	0x56	1.69 V	0x76	2.31 V	0x96	2.94 V	0xB6	3.57 V	0xD6	4.20 V	0xF6	4.82 V
0x17	0.45 V	0x37	1.08 V	0x57	1.71 V	0x77	2.33 V	0x97	2.96 V	0xB7	3.59 V	0xD7	4.22 V	0xF7	4.84 V
0x18	0.47 V	0×38	1.10 V	0x58	1.73 V	0x78	2.35 V	0x98	2.98 V	0xB8	3.61 V	0xD8	4.24 V	0xF8	4.86 V
0x19	0.49 V	0x39	1.12 V	0x59	1.75 V	0x79	2.37 V	0x99	3.00 V	0xB9	3.63 V	0xD9	4.25 V	0xF9	4.88 V
0x1A	0.51 V	0x3A	1.14 V	0x5A	1.76 V	0x7A	2.39 V	0x9A	3.02 V	0xBA	3.65 V	0xDA	4.27 V	0xFA	4.90 V
0x1B	0.53 V	0x3B	1.16 V	0x5B	1.78 V	0x7B	2.41 V	0x9B	3.04 V	0xBB	3.67 V	0xDB	4.29 V	0xFB	4.92 V
0x1C	0.55 V	0x3C	1.18 V	0x5C	1.80 V	0x7C	2.43 V	0x9C	3.06 V	0xBC	3.69 V	0xDC	4.31 V	0xFC	4.94 V
0x1D	0.57 V	0x3D	1.20 V	0x5D	1.82 V	0x7D	2.45 V	0x9D	3.08 V	0xBD	3.71 V	0xDD	4.33 V	0xFD	4.96 V
0x1E	0.59 V	0x3E	1.22 V	0x5E	1.84 V	0x7E	2.47 V	0x9E	3.10 V	0xBE	3.73 V	0xDE	4.35 V	0xFE	4.98 V
0x1F	0.61 V	0x3F	1.24 V	0x5F	1.86 V	0x7F	2.49 V	0x9F	3.12 V	0xBF	3.75 V	0xDF	4.37 V	0xFF	5.00 V

64 Analog Input Telemetry Controller for Space

19.12 Register address 12: Bank Bi-Level Comparators Input Selection

The Bank Bi-Level Comparators Input Selection register 12 selects which bank of 8 inputs are routed to the non-inverting inputs of the bank bi-level comparators, when En Sw bit D3 = 1. Figure 6 on page 22 is a block diagram of bank bi-level comparators operating with En Sw bit D3 = 1 .

When En Sw bit D3 = 0, the bank bi-level comparators are connected to inputs controlled by Mux Channel Select registers 3 and 4 (Table 19 on page 36, Table 20 on page 37). See section 14.3.2 on page 23 for details how the comparators are connected to the inputs CH 1 to CH 64 in this mode.

The comparator inverting inputs are connected to a common threshold voltage set by an 8-bit DAC configured by register 11 (Table 26 on page 42). The bank bi-level comparator outputs are available in register 13 (Table 29 on page 44).

The Use BL-TH bit D7 selects the reference voltage (inverting input trip threshold) for the independent BLI/BLO bi-level comparators, whose non-inverting inputs connect to pins BLI1 to BLI8, and whose outputs connect to pins BLO1 to BLO8.

Table 28: Register 12: Bank Bi-Level Comparators Input Selection

Register Description	Register Address	Register Data							
		D7	D6	D5	D4	D3	D2	D1	D0
Bank Bi-Level Comparators Input Selection register	$\begin{gathered} 12 \\ 0 \times 0 C \end{gathered}$	$\begin{gathered} \hline \text { Use } \\ \text { BL_TH } \end{gathered}$	-	-	-	Bi-Level Mux Switch Position			
Bank Bi-Level Comparators Input Selection register						En Sw	D2	D1	D0
Default register setting on POR or RESET		0	0	0	0	0	0	0	0
Bank bi-level comparators input selection set by the Mux Channel Select registers 3 \& 4 (Table 19 on page 36, Table 20 on page 37)	$\begin{gathered} 12 \\ 0 \times 0 \mathrm{C} \end{gathered}$	X	x	x	x	0	x	x	x
Analog multiplexer inputs $\mathrm{CH} 1-\mathrm{CH} 8$ to the bank comparators		X	X	x	X	1	0	0	0
Analog multiplexer inputs $\mathrm{CH} 9-\mathrm{CH} 16$ to the bank comparators		X	X	X	x	1	0	0	1
Analog multiplexer inputs $\mathrm{CH} 17-\mathrm{CH} 24$ to the bank comparators		X	x	x	x	1	0	1	0
Analog multiplexer inputs $\mathrm{CH} 25-\mathrm{CH} 32$ to the bank comparators		X	X	x	X	1	0	1	1
Analog multiplexer inputs $\mathrm{CH} 33-\mathrm{CH} 40$ to the bank comparators		X	X	X	x	1	1	0	0
Analog multiplexer inputs $\mathrm{CH} 41-\mathrm{CH} 48$ to the bank comparators		X	X	x	X	1	1	0	1
Analog multiplexer inputs $\mathrm{CH} 49-\mathrm{CH} 56$ to the bank comparators		X	X	x	X	1	1	1	0
Analog multiplexer inputs CH57-CH64 to the bank comparators		X	X	x	X	1	1	1	1
Unused register bits. Values written are stored and read back		x	0/1	0/1	0/1	X	X	X	X
BLI/BLO comparators use an internal $2.5 \mathrm{~V} \pm 50 \mathrm{mV}$ reference		0	x	x	x	X	X	X	X
BLI/BLO comparators use external reference on the BL_TH pin		1	X	x	x	X	X	X	X

19.13 Register address 13: Bank Bi-Level Comparators Output Status

The Bank Bi-Level Comparators Output Status register 13 provides the outputs of the 8 bank bi-level comparators selected by the 4 LSBs \{D3:D0\} in register 12 (Table 28 above). A comparator output is high when its associated input is higher than the common threshold voltage set by an 8-bit DAC configured by register 11 (Table 26 on page 42).

Table 29: Register 13: Bank Bi-Level Comparators Output Status

Register Description	Register Address	Register Data							
		D7	D6	D5	D4	D3	D2	D1	D0
Bank Bi-Level Comparators Output Status register	$\begin{gathered} 13 \\ 0 \times 0 \mathrm{D} \end{gathered}$	Selected Bank Bi-Level Comparators Outputs							
Default register setting on POR or $\overline{\text { RESET }}$		0	0	0	0	0	0	0	0
Register $12=0 \times X 0$ to $0 x X 7$. Bank comparators input selection set by the Mux Channel Select registers 3 \& 4	$\begin{gathered} 13 \\ 0 \times 0 D \end{gathered}$	See Table 19 on page 36, Table 20 on page 37							
Register 12 = 0xX8: Bank comparators cover CH1 - CH8		CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1
Register 12 = 0xX9: Bank comparators cover CH9 - CH16		CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9
Register 12 = 0xXA: Bank comparators cover CH17-CH24		CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17
Register 12 = 0xXB: Bank comparators cover CH25-CH32		CH32	CH31	CH30	CH29	CH28	CH27	CH26	CH25
Register 12 = 0xXC: Bank comparators cover CH33-CH40		CH40	CH39	CH38	CH37	CH36	CH53	CH34	CH33
Register $12=0 \times X \mathrm{D}$: Bank comparators cover CH41-CH48		CH48	CH47	CH46	CH45	CH44	CH43	CH42	CH41
Register 12 = 0xXE: Bank comparators cover CH49-CH56		CH56	CH55	CH54	CH53	CH52	CH51	CH50	CH49
Register 12 = 0xXF: Bank comparators cover CH57-CH64		CH64	CH63	CH62	CH61	CH60	CH59	CH58	CH57

19.14 Register address 14 and 15: 10-Bit DAC MSB and LSB

The 10-bit DAC MSB register 14 contains the eight MSBs, and the 10-Bit DAC LSB register 15 contains the two LSBs for the 10-bit current DAC.

To update the DAC, the DAC LSB register 15 is written first. DAC LSB register 15 only stores the two LSBs, [D1:D0]. The remaining 6 bits [D7:D2] are ignored, and read back from the register as 0s. When the DAC MSB register 14 is written, the two LSBs in the DAC LSB register 15 are combined with the eight bits just stored in the DAC MSB register 14. This 10-bit word is used immediately to update the 10-bit DAC. The structure is shown in Figure 19 below.

Figure 19. Register 14 and Register 15 Mapping to DAC Output Register
The 10-bit DAC is assigned to one of three modes of operation:

- Powered down, by clearing Function Enable register 1 bit D2 $=0$ (Table 17 on page 34)
- Assigned as a general-purpose complementary current output 10-bit DAC, in the range 0 to 2 mA routed to the DAC_P output pin and the DAC_N output pin
- Assigned as the internal multiplexer 5-bit current source, in the range 0 to $300 \mu \mathrm{~A}$

To use the 10 -bit DAC as a general purpose DAC:

- Clear the Current Mux Level register 5 Use IDAC bit D7 $=0$ (Table 21 on page 38). This selects the 4 -bit IDAC current source as the multiplexer current source, and frees the 10-bit DAC
- The code range 0 to 1023 in the 10-bit DAC registers 14 and 15 (Table 30 below) sources an increasing output current from 0 to 2 mA at the DAC_P output pin, and a decreasing output current from 2 to 0 mA at the DAC_N output pin
- Terminate both the DAC_P output pin and the DAC_N output pin with resistors $\leq 1.5 \mathrm{k} \Omega$ to AGND to develop nominal output voltages $\leq 3 \mathrm{~V}$ maximum at code $0 \times 3 \mathrm{FF}$ and 0×000 respectively

From the Electrical Characteristics table, the DAC_P and DAC_N currents (including full scale current tolerance of 0.06 mA and DAC INL of 5 LSBs) follow Equation $\overline{8}$, where $\mathrm{R}_{\mathrm{IREF} 1}=20 \mathrm{k} \Omega \pm 1 \%$ resistor from the IREF1 pin to AGND:

DAC_P $=\frac{(2 \pm 0.06) \times\left\{D A C _D 9: D A C _D 0\right\}}{1024} \pm \frac{5 \times 2.06}{1024} \mathrm{~mA}=\frac{(2 \pm 0.06) \times\left\{D A C _D 9: D A C _D 0\right\}}{1024} \pm 0.010 \mathrm{~mA}$
DAC _ N $=(2 \pm 0.06) \times\left(1-\frac{\left\{D A C _D 9: D A C _D 0\right\}}{1024}\right) \pm 0.010 \mathrm{~mA}$

Equation 8. 10-bit DAC Transfer Characteristic for Output Pins DAC_P and DAC_N

Example 1: [DAC_D9:DAC_D0] = b'01000000 00' = 256
DAC _ $\mathrm{P}=\frac{(2 \pm 0.06) \times\{256\}}{1024} \pm 0.010 \mathrm{~mA}=0.5 \mathrm{~mA} \pm 0.025 \mathrm{~mA}=0.475 \mathrm{~mA}$ to 0.525 mA
DAC $-N=(2 \pm 0.06) \times\left(1-\frac{\{256\}}{1024}\right) \pm 0.010 \mathrm{~mA}=1.5 \mathrm{~mA} \pm 0.055 \mathrm{~mA}=1.445 \mathrm{~mA}$ to 1.555 mA
Example 2: [DAC_D9:DAC_D0] = b'11000000 00' $=768$
DAC _ $\mathrm{P}=\frac{(2 \pm 0.06) \times\{768\}}{1024} \pm 0.010 \mathrm{~mA}=1.5 \mathrm{~mA} \pm 0.055 \mathrm{~mA}=1.445 \mathrm{~mA}$ to 1.555 mA
DAC $-N=(2 \pm 0.06) \times\left(1-\frac{\{768\}}{1024}\right) \pm 0.010 \mathrm{~mA}=0.5 \mathrm{~mA} \pm 0.025 \mathrm{~mA}=0.475 \mathrm{~mA}$ to 0.525 mA

Table 30: Register addresses 14 and 15: 10-Bit DAC (driving the DAC_P pin and the DAC_N pin)

Register Description	Register Address	Register Data							
		D7	D6	D5	D4	D3	D2	D1	D0
10-Bit DAC MSB register	$\begin{gathered} \hline 14 \\ 0 \times 0 E \end{gathered}$	DAC _D9	DAC _D8	DAC _D7	DAC _D6	DAC _D5	DAC _D4	DAC _D3	DAC _D2
Default register setting on POR or $\overline{\text { RESET }}$		0	0	0	0	0	0	0	0
10-Bit DAC LSB register	$\begin{gathered} 15 \\ 0 \times 0 F \end{gathered}$	0	0	0	0	0	0	DAC _D1	DAC _D0
Default register setting on POR or $\overline{\mathrm{RESET}}$		0	0	0	0	0	0	0	0
$\begin{aligned} & \text { DAC _ }_{-}=\frac{2 \times\left\{D A C _D 9: \text { DAC_D0 }\right\}}{1024} \mathrm{~mA} \\ & \text { DAC _ }^{\mathrm{N}}=2 \times\left(1-\frac{\left\{\text { DAC_D9: DAC_D0 }^{2}\right.}{1024}\right) \mathrm{mA} \end{aligned}$	14 $0 \times 0 E$ and 15 0x0F	Current Mux Level register 5 Use IDAC bit D7 = 0 (Table 21 on page 38), making the DAC available with complementary outputs DAC_P and DAC_N. Terminate the DAC_P pin and the DAC_N pin each with a resistor $\leq 1.5 \mathrm{k} \Omega$ to AGND to develop complementary nominal output voltages $\leq 3 \mathrm{~V}$							
DAC_P $=0 \mathrm{~mA}, \mathrm{DAC}$, $\mathrm{N}=2 \mathrm{~mA} \pm 3 \%$		Reg. $14=0 \times 00$. Reg. $15=0 \times 00 .\left\{\right.$ DAC_D9: DAC_D0\} $=b^{\prime} 00000000001=0$							
DAC_P $=0.002 \mathrm{~mA}, \mathrm{DAC}$ _ $\mathrm{N}=1.998 \mathrm{~mA}$		Reg. 14 = 0x00. Reg. $15=0 \times 01 .\{$ DAC_D9 : DAC_D0 $=$ b'00000000 01' $=1$							
... up to					.. up	to			
DAC_P $=1.996 \mathrm{~mA}, \mathrm{DAC}$ N $=0.004 \mathrm{~mA}$		$\begin{aligned} & \text { Reg. } 14=0 x F F . \text { Reg. } 15=0 \times 02 .\{\text { DAC_D9 : DAC_D0\} }=\text { b'11111111 } 10 \text { ' = } \\ & 1022 \end{aligned}$							
DAC_P $=1.998 \mathrm{~mA}, \mathrm{DAC}$ - $\mathrm{N}=0.002 \mathrm{~mA}$		$\begin{aligned} & \text { Reg. } 14=0 x F F . \text { Reg. } 15=0 \times 03 .\{\text { DAC_D9 : DAC_D0\} }=\text { b'111111111 11' = } \\ & 1023 \end{aligned}$							

To use the 10-bit DAC for internal use as a 5 -bit current source for the analog input multiplexer:

- Set the Current Mux Level register 5 Use IDAC bit D7 = 1 (Table 21 on page 38). This de-selects the 4 -bit IDAC current source as the multiplexer current source, and allocates the 10 -bit DAC instead
- The code range 0 to 31 in the 10 -bit DAC registers 14 and 15 (Table 31 on page 47) sources an output current from 0 to $300 \mu \mathrm{~A}$ to the analog input multiplexer
- Leave the DAC_P pin open, and terminate the DAC_N pin to either GND or AGND

From the Electrical Characteristics table, the multiplexer source current (including full scale current tolerance of $10 \mu \mathrm{~A}$ and DAC INL of $2 \mu \mathrm{~A}$) follows Equation 9 below, where $\mathrm{R}_{\text {IREF } 1}=20 \mathrm{k} \Omega \pm 1 \%$ resistor from the IREF1 pin to AGND:
Mux _ Current $=\left(\left\{D A C _D 9: D A C _D 0\right\} \times \frac{300 \pm 10}{31}\right) \pm 2 \mu \mathrm{~A}$

Equation 9. 10-bit DAC Transfer Characteristic For 5-bit Current Source

Example 1: [DAC_D9:DAC_D0] = b'00000010 00' = 8
Mux_Current $=\left(\{8\} \times \frac{300 \pm 10}{31}\right) \pm 2 \mu \mathrm{~A}=77.42 \mu \mathrm{~A} \pm 4.58 \mu \mathrm{~A}$

Example 2: [DAC_D9:DAC_D0] = b'00000110 00' = 24
Mux _ Current $\left.=(24\} \times \frac{300 \pm 10}{31}\right) \pm 2 \mu \mathrm{~A}=232.26 \mu \mathrm{~A} \pm 9.74 \mu \mathrm{~A}$

Table 31: Register addresses 14 and 15: 10-Bit DAC (as internal multiplexer current source)

Register Description	Register Address	Register Data							
		D7	D6	D5	D4	D3	D2	D1	D0
10-Bit DAC MSB register	$\begin{gathered} 14 \\ 0 \times 0 E \end{gathered}$	DAC _D9	DAC _D8	DAC _D7	DAC _D6	DAC _D5	DAC _D4	DAC _D3	DAC _D2
Default register setting on POR or $\overline{\text { RESET }}$		0	0	0	0	0	0	0	0
10-Bit DAC LSB register		0	0	0	0	0	0	DAC _D1	DAC _D0
register setting on POR or		0	0	0	0	0	0	0	0
Only use \{DAC_D9 : DAC_D0\} codes in the range b'00000000 00' to b'00000111 11' (0 to 31)		Current Mux Level register 5 Use IDAC bit D7 = 1 (Table 21 on page 38), assigning the DAC_P output to internal use as the current source for the analog input multiplexer. Leave the DAC_P pin open, and connect the DAC_N pin to either GND or AGND							
Mux_Current $=0 \mu \mathrm{~A}$		Reg. $14=0 \times 00$. Reg. $15=0 \times 00 .\left\{\right.$ DAC_D9 : DAC_D0 $=\mathrm{b}^{\prime} 00000000000{ }^{\prime}=0$							
Mux_Current is set to		Reg. $14=0 \times 00$. Reg. $15=0 \times 01 .\left\{\right.$ DAC_D9 : DAC_D0 $=\mathrm{b}^{\prime} 0000000001{ }^{\prime}=1$							
Mux_Current is set to $19.4 \mu \mathrm{~A} \pm 2.6 \mu \mathrm{~A}(\pm 13.7 \%)$		Reg. $14=0 \times 00$. Reg. $15=0 \times 10 .\left\{\right.$ DAC_D9 : DAC_D0 $=b^{\prime} 00000000$ 10' $=2$							
Mux_Current is set to $29 \mu \mathrm{~A} \pm 3 \mu \mathrm{~A}(\pm 10.2 \%)$		Reg. $14=0 \times 00$. Reg. $15=0 \times 11 .\left\{\right.$ DAC_D9 : DAC_D0 $=b^{\prime} 00000000$ 11' $=3$							
Mux_Current is set to $38.7 \mu \mathrm{~A} \pm 3.3 \mu \mathrm{~A}(\pm 8.5 \%)$		Reg. $14=0 \times 01$. Reg. $15=0 \times 00 .\left\{D A C+D 9: D A C _D 0\right\}=b^{\prime} 0000000100 '=4$							
Mux_Current is set to $48.4 \mu \mathrm{~A} \pm 3.6 \mu \mathrm{~A}(\pm 7.5 \%)$		Reg. $14=0 \times 01$. Reg. $15=0 \times 01 .\left\{\right.$ DAC_D9 : DAC_D0 $=\mathrm{b}^{\prime} 00000001$ 01' $=5$							
Mux_Current is set to $58.1 \mu \mathrm{~A} \pm 3.9 \mu \mathrm{~A}(\pm 6.8 \%)$		Reg. $14=0 \times 01$. Reg. $15=0 \times 10 .\left\{\right.$ DAC_D9 : DAC_D0 $=\mathrm{b}^{\prime} 00000001$ 10' $=6$							
Mux_Current is set to $67.7 \mu \mathrm{~A} \pm 4.3 \mu \mathrm{~A}$ ($\pm 6.3 \%$)		Reg. $14=0 \times 01$. Reg. $15=0 \times 11 .\left\{\right.$ DAC_D9 : DAC_D0\} $=\mathrm{b}^{\prime} 0000000111{ }^{\prime}=7$							
Mux_Current is set to $77.4 \mu \mathrm{~A} \pm 4.6 \mu \mathrm{~A}(\pm 5.9 \%)$		Reg. $14=0 \times 02$. Reg. $15=0 \times 00 .\left\{D A C=D 9: D A C _D 0\right\}=b^{\prime} 00000010$ 00' $=8$							
Mux_Current is set to $87.1 \mu \mathrm{~A} \pm 4.9 \mu \mathrm{~A}$ ($\pm 5.6 \%$)	$\begin{gathered} 14 \\ 0 \times 0 \mathrm{E} \end{gathered}$	Reg. $14=0 \times 02$. Reg. $15=0 \times 01 .\left\{\right.$ DAC_D9 : DAC_D0 $=\mathrm{b}^{\prime} 00000010$ 01' $=9$							
Mux_Current is set to $96.8 \mu \mathrm{~A} \pm 5.2 \mu \mathrm{~A}$ ($\pm 5.4 \%$)		Reg. $14=0 \times 02$. Reg. $15=0 \times 10 .\{D A C-D 9: D A C-D 0\}=b^{\prime} 00000010$ 10' $=10$							
Mux_Current is set to $106.5 \mu \mathrm{~A} \pm 5.5 \mu \mathrm{~A}(\pm 5.2 \%)$		Reg. $14=0 \times 02$. Reg. $15=0 \times 11 .\left\{D A C _D 9: D A C _D 0\right\}=b^{\prime} 00000010$ 11' $=11$							
Mux_Current is set to $116.1 \mu \mathrm{~A} \pm 5.9 \mu \mathrm{~A}(\pm 5.1 \%)$		Reg. $14=0 \times 03$. Reg. $15=0 \times 00 .\left\{\right.$ DAC_D9 : DAC_D0 $=\mathrm{b}^{\prime} 000000011$ 00' $=12$							
Mux_Current is set to $125.8 \mu \mathrm{~A} \pm 6.2 \mu \mathrm{~A}(\pm 4.9 \%)$		Reg. $14=0 \times 03$. Reg. $15=0 \times 01 .\{$ DAC_D9 : DAC_D0 $=$ b'00000011 01' $=13$							
Mux_Current is set to $135.5 \mu \mathrm{~A} \pm 6.5 \mu \mathrm{~A}(\pm 4.8 \%)$		Reg. $14=0 \times 03$. Reg. $15=0 \times 10 .\left\{\right.$ DAC_D9 : DAC_D0 $=\mathrm{b}^{\prime} 00000001110^{\prime}=14$							
Mux_Current is set to $145.2 \mu \mathrm{~A} \pm 6.8 \mu \mathrm{~A}(\pm 4.7 \%)$	0x0F	Reg. 14 = 0x03. Reg. $15=0 \times 11 .\{$ DAC_D9 : DAC_D0 $=$ b'00000011 11' $=15$							
Mux_Current is set to $154.8 \mu \mathrm{~A} \pm 7.2 \mu \mathrm{~A}(\pm 4.6 \%)$		Reg. $14=0 \times 04$. Reg. $15=0 \times 00 .\{$ DAC_D9 : DAC_D0 $=$ b'00000100 00' $=16$							
Mux_Current is set to $164.5 \mu \mathrm{~A} \pm 7.5 \mu \mathrm{~A}(\pm 4.5 \%)$		Reg. 14 = 0x04. Reg. $15=0 \times 01 .\{$ DAC_D9 : DAC_D0 $=$ b'00000100 01' $=17$							
Mux_Current is set to $174.2 \mu \mathrm{~A} \pm 7.8 \mu \mathrm{~A}(\pm 4.5 \%)$		Reg. $14=0 \times 04$. Reg. $15=0 \times 10 .\left\{\right.$ DAC_D9 : DAC_D0 $=\mathrm{b}^{\prime} 0000010010{ }^{\prime}=18$							
Mux_Current is set to $183.9 \mu \mathrm{~A} \pm 8.1 \mu \mathrm{~A}(\pm 4.4 \%)$		Reg. 14 = 0x04. Reg. $15=0 \times 11$. \{DAC_D9 : DAC_D0 $=\mathrm{b}^{\prime} 00000010011^{\prime}=19$							
Mux_Current is set to $193.5 \mu \mathrm{~A} \pm 8.5 \mu \mathrm{~A}(\pm 4.4 \%)$		Reg. 14 = 0x05. Reg. 15 = 0x00. \{DAC_D9 : DAC_D0 $=\mathrm{b}^{\prime} 0000010100{ }^{\prime}=20$							
Mux_Current is set to $203.2 \mu \mathrm{~A} \pm 8.8 \mu \mathrm{~A}(\pm 4.3 \%)$		Reg. $14=0 \times 05$. Reg. $15=0 \times 01 .\left\{\right.$ DAC_D9 : DAC_D0 $=\mathrm{b}^{\prime} 0000010101{ }^{\prime}=21$							
Mux_Current is set to $212.9 \mu \mathrm{~A} \pm 9.1 \mu \mathrm{~A}(\pm 4.3 \%)$		Reg. $14=0 \times 05 . \operatorname{Reg} .15=0 \times 10 .\{D A C=D 9: D A C=D 0\}=b^{\prime} 0000010110{ }^{\prime}=22$							
Mux_Current is set to $222.6 \mu \mathrm{~A} \pm 9.4 \mu \mathrm{~A}(\pm 4.2 \%)$		Reg. $14=0 \times 05$. Reg. $15=0 \times 11 .\{$ DAC_D9: DAC_D0 $=$ b'00000101 11' $=23$							
Mux_Current is set to $232.3 \mu \mathrm{~A} \pm 9.7 \mu \mathrm{~A}(\pm 4.2 \%)$		Reg. $14=0 \times 06$. Reg. $15=0 \times 00 .\{$ DAC_D9 : DAC_D0 $=$ b'00000110 00' $=24$							
Mux_Current is set to $241.9 \mu \mathrm{~A} \pm 10.1 \mu \mathrm{~A}(\pm 4.2 \%)$		Reg. $14=0 \times 06$. Reg. $15=0 \times 01 .\left\{\right.$ DAC_D9 : DAC_D0 $=\mathrm{b}^{\prime} 0000011001 \mathrm{l}=25$							
Mux_Current is set to $251.6 \mu \mathrm{~A} \pm 10.4 \mu \mathrm{~A}$ ($\pm 4.1 \%$)		Reg. 14 = 0x06. Reg. $15=0 \times 10 .\{$ DAC_D9 : DAC_D0 $=$ b'00000110 10' $=26$							
Mux_Current is set to $261.3 \mu \mathrm{~A} \pm 10.7 \mu \mathrm{~A}(\pm 4.1 \%)$		Reg. 14 = 0x06. Reg. $15=0 \times 11 .\{$ DAC_D9 : DAC_D0 $=$ b'00000110 11' $=27$							
Mux_Current is set to $271 \mu \mathrm{~A} \pm 11 \mu \mathrm{~A}(\pm 4.1 \%)$		Reg. 14 = 0x07. Reg. $15=0 \times 00 .\left\{\right.$ DAC_D9: DAC_D0 $=\mathrm{b}^{\prime} 00000111100{ }^{\prime}=28$							
Mux_Current is set to $280.6 \mu \mathrm{~A} \pm 11.4 \mu \mathrm{~A}(\pm 4 \%)$		Reg. $14=0 \times 07$. Reg. $15=0 \times 01 .\left\{\right.$ DAC_D9 : DAC_D0 $=\mathrm{b}^{\prime} 00000111$ 01' $=29$							
Mux_Current is set to $290.3 \mu \mathrm{~A} \pm 11.7 \mu \mathrm{~A}(\pm 4 \%)$		Reg. 14 = 0x07. Reg. $15=0 \times 10 .\{$ DAC_D9 : DAC_D0\} $=$ b'00000111 10' $=30$							
Mux_Current is set to $300 \mu \mathrm{~A} \pm 10 \mu \mathrm{~A}(\pm 3.3 \%)$		Reg. $14=0 \times 07$. Reg. $15=0 \times 11 .\left\{D A C=D 9: D A C _D 0\right\}=b^{\prime} 0000011111{ }^{\prime}=31$							

19.15 Register address 16: Calibration

The Calibration register 16 is used at the factory for calibration of the amplifier offset and testing of the multiplexer and programmable current sources. It contains 4 functions, only one of which may be active at a time (Table 32 on page 48 and Table 33 on page 48).

These functions affect the inputs to the instrumentation amplifier, the multiplexer current source, and over-ride the settings of the Non-Inverting Mux Channel Select register 3 (Table 19 on page 36) and/or the Inverting Mux Channel Select register 4 (Table 20 on page 37).

The I GND function causes the inverting input of the instrumentation amplifier to be connected to AGND. This provides a convenient ground connection for local single ended inputs without using the SE_RTN pin. The other 3 functions are available for periodic circuit testing by the system controller if required.

The setting in the Calibration register 16 is ignored (over-ridden) if one of more of the 4-bits [D6:D3] in the Power Status register 2 is set. These settings monitor the VREF, +5 V , VEE, and VCC rails. See Table 18 on page 35.

Table 32. Calibration Register Function Details

Function Selected	Instrumentation Amplifier Modification	Function Behavior	Register Over-Ridden
I GND	Non-inverting input connected to multiplexer as normal Inverting input tied to AGND instead of multiplexer	This option connects the instrumentation amplifier's inverting input to GND internally. This allows the acquisition of a single-ended signal using only one CH input. The inverting input can alternatively be connected to an external GND via the SE_RTN pin using the Inverting Mux Channel Select register (Table 20 on page 37). See Figure 10 on page 26 for a connection example	Inverting Mux Channel Select register 4 (Table 20 on page 37)
NP Cont Check	Non-inverting input tied to VREF/2 instead of multiplexer Inverting input connected to the multiplexer current source (set as normal) as well as the multiplexer See Figure 20 on page 49	Use this setting to perform a continuity check of the instrumentation amplifier's inverting input multiplexer. An open multiplexer path (including input source) is detected by the current source pulling up the inverting input higher than VREF/2 causing the amplifier output to go low. If an external sensor is properly attached, the voltage read by the ADC is the difference of VREF/2 and the product of the current source and the impedance of the sensor plus the impedance of the two multiplexer switches encountered in the current path.	Non-Inverting Mux Channel Select register 3 (Table 19 on page 36) Current Mux Channel Select register 6 (Table 22 on page 39)
Cont Check	Non-inverting input connected to the multiplexer current source (set as normal) as well as the multiplexer Inverting input is connected to the multiplexer as normal See Figure 21 on page 49	Use this setting to perform a continuity check of the instrumentation amplifier's non-inverting input multiplexer. An open multiplexer path (including input source) is detected by the current source pulling up the noninverting input causing the amplifier output to go high. A working multiplexer path allows the total resistance of the two multiplexers in series with the input source to be measured as a voltage drop due to the current source. If the inverting input is selected as the same channel input as the non-inverting input, then the resistance of the non-inverting input multiplexer can be measured	Current Mux Channel Select register 6 (Table 22 on page 39)
IA Short	Non-inverting input connected to multiplexer as normal Inverting input is tied to the noninverting input	This option allows the instrumentation amplifier's offset and common mode errors to be measured	Inverting Mux Channel Select register 4 (Table 20 on page 37)

Table 33: Register 16: Calibration

Register Description		Register Address	Register Data								
		D7	D6	D5	D4	D3	D2	D1	D0		
Power Status register			$\begin{gathered} 16 \\ 0 \times 10 \end{gathered}$	IA Short	-	-	Cont Check	NP Cont Check	-	$\begin{gathered} \text { I } \\ \text { GND } \end{gathered}$	ISET
Default register set	g on POR or $\overline{\text { RESET }}$	0		0	0	0	0	0	0	0	
Factory test setting. Always write this register with ISET $=0$		$\begin{gathered} 16 \\ 0 \times 10 \end{gathered}$	X	x	x	X	X	x	X	0	
Unused register bits. Values written are stored and read back			X	0/1	0/1	X	X	0/1	X	0	
Instrumentation amplifier's non-inverting input voltage is modified as follows:	Instrumentation amplifier's inverting input voltage is modified as follows:										
-	-		0	X	x	0	0	x	0	0	
-	Tied to non-inverting input		1	x	x	x	X	X	x	0	
-	Tied to AGND		0	x	X	X	X	X	1	0	
Tied to VREF	Current source applied		0	X	X	X	1	x	0	0	
Current source applied	-		0	X	X	1	0	X	0	0	

Figure 20. Inverting Multiplexer Terminal Continuity Check Connections (Calibration register $16 \mathbf{= 0 x 0 8)}$

Figure 21. Continuity Check Connections (Calibration register $16=0 \times 10$)

19.16 Register address 17: OTP

The OTP register enables the user to temporarily over-ride the factory programmed OTP trim settings, and adjust the values as desired. The default values can be restored back from OTP via the same register. The default values are also restored from OTP when a reset is performed by either toggling the RESET pin or via the Master Reset register 0 (Table 16 on page 33).

To adjust any trim values, write 0×01 to register 17 (Table 34) to preload registers 18 to 22 with the factory programmed OTP settings. Then write 0×00 to register 17 to allow registers 18 to 22 to be written, but not enable those registers contents to be used by the LX7730 yet. Now make any changes to the Trim registers 18 to 23 (Table 35) in any order. Finally, active the use of the registers 18 to 22 as the trim settings by writing $0 x 02$ to register 17 .

The Trim registers 18 to 23 can be modified on the fly while activated (when register $17=0 \times 02$). Note however that the bits for ADCvtoi[4:0] and vtoi[4:0] are spread over two registers.

The offs[4:0] bits D3 to D0 in register 19 allow the total analog front end offset (instrumentation amplifier plus filters to the ADC input at ADC_IN to be adjusted. Adjustment are easily monitored using the ADC.

Table 34: Register 17: OTP

Register Description	Register Address	Register Data							
		D7	D6	D5	D4	D3	D2	D1	D0
OTP register	$\begin{gathered} 17 \\ 0 \times 11 \end{gathered}$	-	-	-	-	-	-	OTP out select	OTP in select
Default register setting on POR or $\overline{\text { RESET }}$		0	0	0	0	0	0	0	0
No action	$\begin{gathered} 17 \\ 0 \times 11 \end{gathered}$	x	x	x	x	x	x	x	0
Registers 18 to 22 are loaded with the POR or $\overline{\text { RESET }}$ default settings		x	x	X	X	x	x	X	1
Trim values are set according to factory OTP values		x	X	X	X	x	X	0	x
Trim values are set according to the data in registers 18 to 22		x	X	X	X	X	x	1	X
Unused register bits. Values written are stored and read back		0/1	0/1	0/1	0/1	0/1	0/1	x	x

Table 35: Registers 18 to 22: Trim

Register Description	Register Address	Register Data							
		D7	D6	D5	D4	D3	D2	D1	D0
Trim register 18	$\begin{gathered} 18 \\ 0 \times 12 \end{gathered}$	cmux2	cmux1	cmux0	vref4	vref3	vref2	vref1	vref0
VREF adjust		X	x	X			ref[4:0		
10-bit IDAC reference adjust		cmux[2:0]			X	X	x	X	x
Trim register 19	$\begin{gathered} 19 \\ 0 \times 13 \end{gathered}$	vbgtc3	vbgtc2	vbgtc1	vbgtc0	offs3	offs2	offs1	offs0
Instrumentation amplifier offset adjust		x	x	x	x		offs	3:0]	
Bandgap temperature coefficient adjust		vbgtc[3:0]				X	x	x	x
Trim register 20	$\begin{gathered} 20 \\ 0 \times 14 \end{gathered}$	vbg4	vbg3	vbg2	vbg1	vbg0	vtoi4	vtoi3	vtoi2
Global current source adjust, trimmed first. Note: vtoi[4:0] is spread over registers 20 \& 21		x	x	x	x	x		toi[4:2	
Bandgap value adjust				vbg[4:0]			X	X	X
Trim register 21	$\begin{gathered} 21 \\ 0 \times 15 \end{gathered}$	vtoi1	vtoi0	osc3	osc2	osc1	osc0	ADC vtoi4	ADC vtoi3
ADC current reference adjust. Note: ADCvtoi[4:0] is spread over registers 20 \& 22		x	X	x	x	x	X	ADC	i[4:3]
Charge pump clock adjust		X	x	osc[3:0]				x	X
Global current source adjust, trimmed first. Note: vtoi[4:0] is spread over registers 20 \& 21		vtoi[1:0]		x	X	x	X	x	x
Trim register 22	$\begin{gathered} 22 \\ 0 \times 16 \end{gathered}$	ADC vtoi2	ADC vtoi1	ADC vtoi0	-	-	-	-	-
Unused register bits. Values written are stored and read back		x	x	X	0/1	0/1	0/1	0/1	0/1
ADC current reference adjust. Note: ADCvtoi[4:0] is spread over registers 20 \& 22		ADCvtoi[2:0]			X	x	x	x	x
Trim register 23	$\begin{gathered} 23 \\ 0 \times 17 \end{gathered}$	lo_dis	-	-	-	-	-	-	-
Unused register bits. Values written are stored and read back		x	0/1	0/1	0/1	0/1	0/1	0/1	0/1
No action		0	x	x	x	x	X	x	x
Take all I/O pins Hi-Z for input threshold testing		1	X	X	X	X	X	x	X

20 Characteristic Curves

21 CQFP-132 (Ceramic Quad Flat Pack) Dimensions

Dim	Millimeters		Inches	
	MIN	MAX	MIN	MAX
A	1.93	2.39	0.076	0.094
b	0.23	0.33	0.009	0.013
C	0.125	0.20	0.0049	0.0079
D	39.37 typ		1.55 typ	
D1	24.00	24.26	0.945	
0.955				
e	0.635 BSC		0.025 BSC	
E	39.37 typ		1.55 typ	
E1	24.00	24.25	0.945	
L	7.62 typ		0.30 typ	

Figure 22. CQFP-132 Package Dimensions
Note:

1. Package includes non-conductive ceramic tie-bars mechanically connected to all pins
2. Parts are shipped with untrimmed and unformed leads
3. Package mass is 4.6 g typ with 14 mm leads (trimmed flush with non-conductive ceramic tie-bars, tie bars discarded)
4. The metal package top is electrically isolated from the body of the package
5. The lid and lead material is Kovar with NiAu plating

Figure 23. Package as shipped with non-conductive ceramic tie-bars, untrimmed and unformed leads

22 QFP-208 (Metric Quad Flat Pack) Dimensions

Dim	Millimeters			Inches		
	MIN	NOM	MAX	MIN	NOM	MAX
A	-	3.70	4.07	-	0.146	0.160
A1	0.25	0.33	-	0.010	0.013	-
A2	3.20	2.37	3.60	0.126	0.093	0.142
b	0.17	0.22	0.27	0.007	0.009	0.011
D	30.60 BSC		1.20 BSC			
D1	28.00 BSC			1.10 BSC		
E	0.50 BSC			0.01969		
E	30.60 BSC			1.20 BSC		
E1	28.00 BSC		1.10 BSC C			
L	0.50	0.60	0.75	0.020	0.024	0.030
L1	1.30 REF			0.051 REF		
S	0.40	-	-	0.016	-	-
Θ	0°	-	7°	0°	-	7°

Figure 24. QFP-132 Typical PCB Foil Pattern (0.006" gap between pads)

64 Analog Input Telemetry Controller for Space

23 Change Log

Date	Issue	Changes
2018-05-10	1.4	Release before change log started
2019-07-12	2.0	Electrical characteristic table changes: ESD susceptibility in Absolute Maximum Ratings split into two lines for clarity. Data sheet body revised significantly for clarity
2019-09-09	2.1	Typos fixed in text, Tables 4 \& 5. Added maximum limit for operating current with external VEE to EC table. Added package mass
2019-10-31	2.2	Low power version added (VCC operating current $\mathrm{I}_{\mathrm{vcc}}$ reduced from 85 mA maximum to 78 mA , VCC standby current $\mathrm{I}_{\mathrm{vcc}}$ reduced from 7 mA maximum to 6.75 mA). CLK pin clarified as 125 kHz to 500 kHz clock. Parallel interface figures merged into one for clarity. Details and guidelines added for register 8 operations
2020-01-24	2.3	QFP-208 plastic package added
2020-06-10	2.4	Section 14 expanded to clarify operation with negative-going single-ended inputs. Noted that CQFP-132 ES part is not hermetic, lid and lead material is Kovar, and lid is isolated. Typo in section 1 title. Typo in Table 1 used RESET instead of EXT_REF. Typos in EC Table used LX7300 instead of LX7730. Corrected flows for LMMF-V and LMMF-Q in ordering table. Clarified krad to $\mathrm{krad}(\mathrm{Si})$ and added SAM3X8ERT to first page. Swapped QFP-208 and CQFP-132 pin configuration drawings to match pin description order. Clarified that SPI transactions must be 15 bits long. Split Table 13 into two tables. Added heatsinking section. Noted in section 15.1 .1 and Figure 9 that SE_RTN is available as a differential inverting input.

Microsemi.

Microsemi Corporate Headquarters

One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
E-mail: sales.support@microsemi.com
(C) 2020 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense \& security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,400 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

[^0]: ${ }^{(1)}$ Voltage Clamp (power applied) 1 mA into pin will clamp to the VCC supply

