

Quad 2-Input NOR Gate MM74HC02

General Description

The MM74HC02 NOR gates utilize advanced silicon–gate CMOS technology to achieve operating speeds similar to LS–TTL gates with the low power consumption of standard CMOS integrated circuits. All gates have buffered outputs, providing high noise immunity and the ability to drive 10 LS–TTL loads. The 74HC logic family is functionally as well as pin–out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to $V_{\rm CC}$ and ground.

Features

• Typical Propagation Delay: 8 ns

• Wide Power Supply Range: 2 V to 6 V

• Low Quiescent Supply Current: 20 μA Maximum (74HC Series)

• Moisture Level Sensitivity 1

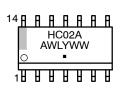
Low Input Current: 1 μA Maximum
 High Output Current: 4 mA Minimum

• This Device is Pb-Free and Halide Free

ABSOLUTE MAXIMUM RATINGS (Note 1)

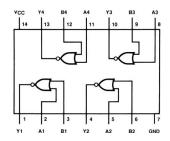
Symbol	Parameter	Rating	Unit
V _{CC}	Supply Voltage	-0.5 to +7.0	V
V _{IN}	DC Input Voltage	-0.5 to V _{CC} +0.5	V
V _{OUT}	DC Output Voltage	-0.5 to V _{CC} +0.5	V
I _{IK} , I _{OK}	Clamp Diode Current	±20	mA
I _{OUT}	DC Output Current, per pin	±25	mA
I _{CC}	DC V _{CC} or GND Current, per pin	±50	mA
T _{STG}	Storage Temperature Range	-65 to +150	°C
P_{D}	Power Dissipation (Note 2)	600	mW
	S.O. Package only	500	
TL	Lead Temperature (Soldering 10 seconds)	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

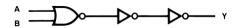

- 1. Unless otherwise specified all voltages are referenced to ground.
- Power dissipation temperature derating plastic "N" package: –12 mW/°C from 65°C to 85°C.

SOIC-14 NB, CASE 751A-0.3 TSSOP-14, CASE 948G-01

MARKING DIAGRAM


HC02A = Specific Device Code
A = Assembly Location
WL, L = Wafer Lot Number
Y = Year

WW, YW = Work Week ■ Pb-Free Package


(Note: Microdot may be in either location)

CONNECTION DIAGRAM

Pin Assignment for SOIC and TSSOP

LOGIC DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 3 of this data sheet.

MM74HC02

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit	
V _{CC}	Supply Voltage		2	6	V
V _{IN} , V _{OUT}	DC Input or Output Voltage	0	V _{CC}	V	
T _A	Operating Temperature Range		-40	+85	°C
t _r , t _f	Input Rise or Fall Times V _{CC} = 2.0 V		-	1000	ns
	V _{CC} = 4.5 V		-	500	
		V _{CC} = 6.0 V	-	400	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS (Note 3)

				T _A =	25°C	T _A = -40°C to 85°C	T _A = −55°C to 125°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Тур.		Guaranteed L	imits	Unit
V _{IH}	Minimum HIGH Level	2.0		-	1.50	1.50	1.50	V
	Input Voltage	4.5		-	3.15	3.15	3.15	
		6.0	1	-	4.20	4.20	4.20	1
V _{IL}	Maximum LOW Level	2.0		-	0.50	0.50	0.50	V
	Input Voltage	4.5	1	-	1.35	1.35	1.35	1
		6.0	1	-	1.80	1.80	1.80	1
V _{OH}	Minimum HIGH Level	2.0	$V_{IN} = V_{IH} \text{ or } V_{IL}$	2.0	1.9	1.9	1.9	V
	Output Voltage	4.5	- Î _{OUT} ≦ 20 μĀ	4.5	4.4	4.4	4.4	1
		6.0	1	6.0	5.9	5.9	5.9	1
		4.5	$V_{IN} = V_{IH} \text{ or } V_{IL},$ $ I_{OUT} \le 4.0 \text{ mA}$	4.20	3.98	3.84	3.70	
		6.0	$V_{IN} = V_{IH} \text{ or } V_{IL},$ $ I_{OUT} \le 5.2 \text{ mA}$	5.70	5.48	5.34	5.20	
V _{OL}	Maximum LOW Level	2.0	$V_{IN} = V_{IH} \text{ or } V_{IL}$	0	0.1	0.1	0.1	V
	Output Voltage	4.5	· Ï _{OUT} ≤ 20 μĀ	0	0.1	0.1	0.1	1
		6.0	1	0	0.1	0.1	0.1	1
		4.5	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$	0.20	0.26	0.33	0.40	
		6.0	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 5.2 \text{ mA}$	0.20	0.26	0.33	0.40	
I _{IN}	Maximum Input Current	6.0	V _{IN} = V _{CC} or GND	-	±0.1	±1.0	±1.0	μΑ
Icc	Maximum Quiescent Supply Current	6.0	$V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0 \mu A$	-	2.0	20	40	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS

(V $_{CC}$ = 5 V, T $_{A}$ = 25°C, C $_{L}$ = 15 pF, t $_{r}$ = t $_{f}$ = 6 ns)

Symbol	Parameter	Conditions	Тур.	Guaranteed Limit	Unit
t_{PHL} , t_{PLH}	Maximum Propagation Delay		8	15	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

For a power supply of 5 V ±10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5 V. Thus the 4.5 V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5 V and 4.5 V respectively. (The V_{IH} value at 5.5 V is 3.85 V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0 V values should be used.

MM74HC02

AC ELECTRICAL CHARACTERISTICS

(V_{CC} = 2.0 V to 6.0 V, C_L = 50 pF, t_r = t_f = 6 ns, unless otherwise specified)

				T _A =	25°C	T _A = -40°C to 85°C	T _A = −55°C to 125°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Тур.		Guaranteed L	imits	Unit
t _{PHL} , t _{PLH}	Maximum Propagation	2.0		45	90	113	134	ns
	Delay	4.5	1	9	18	23	27	
		6.0	1	8	15	19	23	
t _{TLH} , t _{THL}	Maximum Output	2.0		30	75	95	110	ns
	Rise and Fall Time	4.5	1	8	15	19	22	
		6.0	1	7	13	16	19	
C _{PD}	Power Dissipation Capacitance (Note 4)		(per gate)	20	-	-	-	pF
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption,

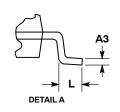
ORDERING INFORMATION

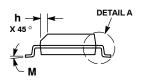
Device	Package	Shipping [†]
MM74HC02M	SOIC-14 NB	55 Units / Tube
MM74HC02MX	(Pb-Free and Halide Free)	2500 / Tape & Reel
MM74HC02MTC	TSSOP-14	96 Units / Tube
MM74HC02MTCX	(Pb-Free and Halide Free)	2500 / Tape & Reel

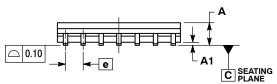
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NOTE: All packages are lead free per JEDEC: J-STD-020B standard.

 $I_S = C_{PD} V_{CC} f + I_{CC}$.






SOIC-14 NB CASE 751A-03 ISSUE L

DATE 03 FEB 2016

GENERIC MARKING DIAGRAM*

MIN MAX

0.050 BSC

0.068

0.019

0.054

0.25 0.004 0.010

0.25 0.008 0.010

0.50 0.010 0.019

1.25 0.016 0.049

0.49 0.014

8.55 8.75 0.337 0.344 3.80 4.00 0.150 0.157

NOTES:
1. DIMENSIONING AND TOLERANCING PER

5. MAXIMUM MOLD PROTRUSION 0.15 PER

MILLIMETERS MIN MAX

1.27 BSC

0.19

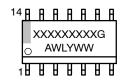
0.25

0.40

SIDE

Α

A1 0.10


АЗ

b 0.35

D 8.55 E 3.80

e H h

ASME Y14.5M, 1994.
CONTROLLING DIMENSION: MILLIMETERS.
DIMENSION b DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE PROTRUSION
SHALL BE 0.13 TOTAL IN EXCESS OF AT
MAXIMUM MATERIAL CONDITION.
DIMENSIONS D AND E DO NOT INCLUDE
MOLD PROTRUSIONS.

XXXXX = Specific Device Code A = Assembly Location

WL = Wafer Lot
 Y = Year
 WW = Work Week
 G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

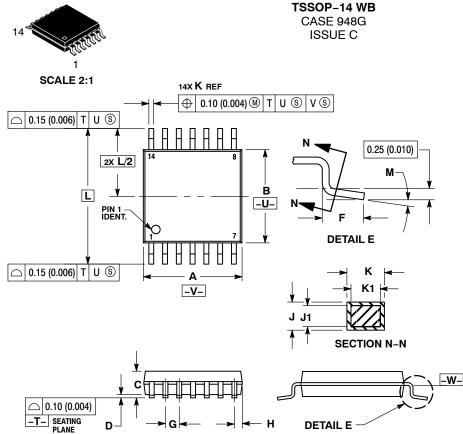
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DIMENSIONS: MILLIMETERS

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Documer Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red			
DESCRIPTION:	SOIC-14 NB		PAGE 1 OF 2		

onsemi and ONSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.


SOIC-14 CASE 751A-03 ISSUE L

DATE 03 FEB 2016

STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

DOCUMENT NUMBER:			Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2	

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

DATE 17 FEB 2016

- NOTES.

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A DOES NOT INCLUDE MOLD
- FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE
- INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL
- INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.

 6. TERMINAL NUMBERS ARE SHOWN FOR DECEDEDIC ONLY
- REFERENCE ONLY.
 DIMENSION A AND B ARE TO BE
- DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026 BSC		
Н	0.50	0.60	0.020	0.024	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40	BSC	0.252	BSC	
М	o°	8 °	0 °	8 °	

GENERIC MARKING DIAGRAM*

= Assembly Location

= Wafer Lot Υ = Year

W = Work Week

= Pb-Free Package (Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

SOLDERIN	G FOOTPRINT
-	7.06
1	
— <u>—</u>	
, <u> </u>	PITCH
14X 0.36	
1.26	DIMENSIONS: MILLIMETERS

	DOCUMENT NUMBER:	98ASH70246A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
I	DESCRIPTION:	TSSOP-14 WB		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales