NLAS4157

Analog Switch, SPDT,

1Ω RoN

The NLAS4157 is a low $\mathrm{R}_{\text {ON }}$ SPDT analog switch. This device is designed for low operating voltage, high current switching of speaker output for cell phone applications. It can switch a balanced stereo output. The NLAS4157 can handle a balanced microphone/speaker/ringtone generator in a monophone mode. The device contains a break-before-make (BBM) feature.

Features

- Single Supply Operation:
1.65 V to $5.5 \mathrm{~V}_{\mathrm{CC}}$

Function Directly from LiON Battery

- Tiny SC88 6-Pin Pb-Free Package:

Meets JEDEC MO-220 Specifications

- R_{ON} Typical $=0.8 \Omega @ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
- Low Static Power
- This is a $\mathrm{Pb}-$ Free Device

Typical Applications

- Cell Phone Speaker/Microphone Switching
- Ringtone-Chip/Amplifier Switching
- Stereo Balanced (Push-Pull) Switching

Important Information

- Ringtone-Chip/Amplifier Switching
- Continuous Current Rating Through each Switch $\pm 300 \mathrm{~mA}$
- Conforms to: JEDEC MO-220, Issue H, Variation VEED-6
- Pin for Pin Compatible with FSA4157

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

Figure 1. Input Equivalent Circuit

PIN DESCRIPTION

Pin Name	Description
A, B0, B1	Data Ports
S	Control Input

TRUTH TABLE

Control Input	Function
L	B0 Connected to A
H	B1 Connected to A

H = HIGH Logic Level.
L = LOW Logic Level.

MAXIMUM RATINGS

Symbol	Rating	Value	Unit
V_{CC}	Positive DC Supply Voltage	-0.5 to +6.0	V
$\mathrm{~V}_{\mathrm{IS}}$	Analog Input Voltage $\left(\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}\right.$, or $\left.\mathrm{V}_{\mathrm{COM}}\right)$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\mathrm{IN}}$	Digital Select Input Voltage	-0.5 to +6.0	V
$\mathrm{I}_{\text {anl1 }}$	Continuous DC Current from COM to NC/NO	± 300	mA
$\mathrm{I}_{\text {anl-pk1 }}$	Peak Current from COM to NC/NO, 10 Duty Cycles (Note 1$)$	± 500	mA
$\mathrm{I}_{\mathrm{clmp}}$	Continuous DC Current into COM/NC/NO with respect to V_{CC} or GND	± 100	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Defined as $10 \% \mathrm{ON}, 90 \%$ off duty cycle.

RECOMMENDED OPERATING CONDITIONS

Symbol	Rating	Min	Max	Unit
V_{CC}	Positive DC Supply Voltage	1.65	5.5	V
$\mathrm{~V}_{\mathrm{IS}}$	Analog Input Voltage (A, B0, B1)	0	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IN}	Digital Select Input Voltage (S)	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature Range		-40	85
${ }^{\circ} \mathrm{C}$				
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise or Fall Time, SELECT	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$		20
		$\mathrm{~V}=5.5 \mathrm{~V}$		10

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
V_{IH}	HIGH Level Input Voltage		$\begin{aligned} & 2.7 \\ & 4.5 \end{aligned}$				$\begin{aligned} & 2.0 \\ & 2.4 \end{aligned}$		V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage		$\begin{aligned} & 2.7 \\ & 4.5 \end{aligned}$					$\begin{aligned} & 0.6 \\ & 0.8 \end{aligned}$	V
I_{N}	Input Leakage Current	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq 5.5 \mathrm{~V}$	0-5.5			± 0.1		± 1	$\mu \mathrm{A}$
IofF	OFF State Leakage Current (Note 7)	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$	5.5	-2.0		+2.0		± 20	nA
Ion	ON State Leakage Current (Note 7)	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$	5.5	-4.0		+4.0		± 40	nA
RON	Switch On Resistance (Note 2)	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=-100 \mathrm{~mA}, \\ & \mathrm{~B}_{0} \text { or } \mathrm{B}_{1}=3.5 \mathrm{~V} \end{aligned}$	2.7		2.0	4.0		4.3	Ω
		$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=-100 \mathrm{~mA}, \\ & \mathrm{~B}_{0} \text { or } \mathrm{B}_{1}=1.5 \mathrm{~V} \end{aligned}$	4.5		0.8	1.15		1.3	
I_{CC}	Quiescent Supply Current All Channels ON or OFF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND, IOUT $=0$	5.5			0.5		1.0	$\mu \mathrm{A}$

Analog Signal Range

| $\Delta \mathrm{R}_{\mathrm{ON}}$ | On Resistance Match
 Between Channels
 (Notes 2, 3, 4) | $\mathrm{I}_{\mathrm{A}}=-100 \mathrm{~mA}$,
 B_{0} or $\mathrm{B}_{1}=1.5 \mathrm{~V}$
 $\mathrm{I}_{\mathrm{A}}=-100 \mathrm{~mA}$,
 B_{0} or $\mathrm{B}_{1}=3.5 \mathrm{~V}$ | 2.7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

2. Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B Ports).
3. Parameter is characterized but not tested in production.
4. $\mathrm{DR}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}} \max -\mathrm{R}_{\mathrm{ON}}$ min measured at identical V_{CC}, temperature and voltage levels.
5. Flatness is defined as the difference between the maximum and minimum value of On Resistance over the specified range of conditions.
6. Guaranteed by Design.
7. This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the On Resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).

AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit	Figure
				Min	Typ	Max	Min	Max		
$\mathrm{t}_{\mathrm{PHL}}$ tpLH	Propagation Delay Bus-to-Bus (Note 9)	$\mathrm{V}_{1}=$ OPEN	$\begin{aligned} & \hline 2.7 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 2.0 \\ & 0.3 \end{aligned}$			ns	3, 4
ton	Output Enable Time Turn On Time (A to B_{n})	$\begin{aligned} & \mathrm{B}_{0} \text { or } \mathrm{B}_{1}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~B}_{0} \text { or } \mathrm{B}_{1}=3.0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 30 \\ & 20 \end{aligned}$		$\begin{aligned} & 35 \\ & 25 \end{aligned}$	ns	3, 4
tofF	Output Disable Time Turn Off Time (A Port to B Port)	$\begin{aligned} & \mathrm{B}_{0} \text { or } \mathrm{B}_{1}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~B}_{0} \text { or } \mathrm{B}_{1}=3.0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 20 \\ & 15 \end{aligned}$		$\begin{aligned} & 25 \\ & 20 \end{aligned}$	ns	3, 4
$\mathrm{t}_{\text {BBM }}$	Break Before Make Time (Note 8)		$\begin{aligned} & 2.7 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$		ns	2
Q	Charge Injection (Note 8)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$	$\begin{aligned} & 2.7 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 26 \\ & 48 \end{aligned}$				pC	6
$\mathrm{O}_{\text {IRR }}$	Off Isolation (Note 10)	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$	$\begin{gathered} 2.7- \\ 5.5 \end{gathered}$		-52				dB	5
$\mathrm{X}_{\text {talk }}$	Crosstalk	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$	$\begin{gathered} \hline 2.7- \\ 5.5 \end{gathered}$		-57				dB	7
BW	-3 dB Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	$\begin{gathered} 2.7- \\ 5.5 \end{gathered}$		40				MHz	8
THD	Total Harmonic Distortion (Note 8)	$\begin{aligned} & \hline \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & 0.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \end{aligned}$	$\begin{gathered} 2.7- \\ 5.5 \end{gathered}$		0.012				\%	9

8. Guaranteed by Design.
9. This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the On Resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).
10. Off Isolation $=20 \log _{10}\left[V_{A} / V_{B n}\right]$.

CAPACITANCE (Note 11)

Symbol	Parameter	Test Conditions	Typ	Max	Unit	Figure $\#$
C_{IN}	Select Pin Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	10		pF	
$\mathrm{C}_{\mathrm{IO}-\mathrm{B}}$	B Port Off Capacitance	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	25		pF	
$\mathrm{C}_{\mathrm{IOA}-\mathrm{ON}}$	A Port Capacitance when Switch is Enabled	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	87		pF	

11. $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, Capacitance is characterized but not tested in production.

DEVICE ORDERING INFORMATION

Device Order Number	Package	Shipping †
NLAS4157DFT2G	SC-88 $($ Pb-Free $)$	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Figure 2. $\mathrm{t}_{\text {BBM }}$ (Time Break-Before-Make)

Figure 3. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Figure 4. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\text {ISO }}$, Bandwidth and $\mathrm{V}_{\text {ONL }}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20 \log \left(\frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\mathrm{ONL}}=$ On Channel Loss $=20 \log \left(\frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz to 50 MHz
Bandwidth (BW) = the frequency 3 dB below $\mathrm{V}_{\mathrm{ONL}}$
$\mathrm{V}_{\mathrm{CT}}=$ Use $\mathrm{V}_{\text {ISO }}$ setup and test to all other switch analog input/outputs terminated with 50Ω

Figure 5. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/ $V_{\text {ONL }}$

Output

Figure 6. Charge Injection: (Q)

Figure 7. Cross Talk vs. Frequency $@ V_{c c}=4.5$ V

Figure 9. Total Harmonic Distortion

Figure 11. On-Resistance vs. Signal Voltage @ $\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$

Figure 8. Bandwidth vs. Frequency

Figure 10. On-Resistance vs. Signal Voltage @ $\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$

Figure 12. On-Resistance vs. Signal Voltage

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS
2. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END.
3. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF DIMENSIONS D AND E1 AT THE OUT
THE PLASTIC BODY AND DATUM H.
DATUMS A AND B ARE DETERMINED AT DATUM H
4. DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP.
5. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE O.08 TOTAL IN EXCESS OF DIMENSION b AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
A	---	---	1.10	---	---	0.043
A1	0.00	---	0.10	0.000	---	0.004
A2	0.70	0.90	1.00	0.027	0.035	0.039
b	0.15	0.20	0.25	0.006	0.008	0.010
C	0.08	0.15	0.22	0.003	0.006	0.009
D	1.80	2.00	2.20	0.070	0.078	0.086
E	2.00	2.10	2.20	0.078	0.082	0.086
E1	1.15	1.25	1.35	0.045	0.049	0.053
e	0.65 BSC			0.026 BSC		
L	0.26	0.36		0.46	0.010	0.014
L2	0.15 BSC			0.006 BSC		
aaa	0.15			0.006		
bbb	0.30			0.012		
ccc	0.10			0.004		
ddd	0.10			0		

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

M = Date Code*

- = Pb-Free Package
(Note: Microdot may be in either location)
*Date Code orientation and/or position may vary depending upon manufacturing location.
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-F r e e ~ i n d i c a t o r, ~ " G " ~ o r ~ m i c r o d o t ~ " " ", ~ m a y ~$ or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42985B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88/SC70-6/SOT-363 | PAGE 1 OF 2 |

[^0] special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SC-88/SC70-6/SOT-363

CASE 419B-02
ISSUE Y
STYLE 1:
PIN 1. EMITTER 2
2. BASE 2
3. COLLECTOR 1
4. EMITTER 1
5. BASE 1
6. COLLECTOR 2

STYLE 7:
PIN 1. SOURCE 2
2. DRAIN 2
3. GATE 1
4. SOURCE 1
5. DRAIN 1
6. GATE 2

STYLE 13:
PIN 1. ANODE
2. N/C
3. COLLECTOR
4. EMITTER
5. BASE
6. CATHODE

STYLE 19:
PIN 1. IOUT
2. GND
3. GND
4. V CC
5. V EN
6. V REF
STYLE 25:
PIN 1. BASE 1
2. CATHODE
3. COLECTOR 2
4. BASE 2
5. EMITTER
6. COLLECTOR 1
STYLE 2:
CANCELLED

STYLE 8:
CANCELLED

STYLE 14:
PIN 1. VREF
2. GND
3. GND
4. IOUT
5. VEN
6. VCC

STYLE 20:
PIN 1. COLLECTOR
2. COLLECTOR
3. BASE
4. EMITTER
5. COLLECTOR
6. COLLECTOR
STYLE 26:
PIN 1. SOURCE 1
2. GATE 1
3. DRAIN 2
4. SOURCE 2
5. GATE 2
6. DRAIN 1

STYLE 3 : CANCELLED	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. COLLECTOR 4. EMITTER 5. BASE 6. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE	STYLE 6: PIN 1. ANODE 2 2. N / C 3. CATHODE 1 4. ANODE 1 5. N / C 6. CATHODE 2
STYLE 9:	STYLE 10:	STYLE 11:	STYLE 12:
PIN 1. EMITTER 2	PIN 1. SOURCE 2	PIN 1. CATHODE 2	PIN 1. ANODE 2
2. EMITTER 1	2. SOURCE 1	2. CATHODE 2	2. ANODE 2
3. COLLECTOR 1	3. GATE 1	3. ANODE 1	3. CATHODE 1
4. BASE 1	4. DRAIN 1	4. CATHODE 1	4. ANODE 1
5. BASE 2	5. DRAIN 2	5. CATHODE 1	5. ANODE 1
6. COLLECTOR 2	6. GATE 2	6. ANODE 2	6. CATHODE 2
STYLE 15:	STYLE 16:	STYLE 17:	STYLE 18:
PIN 1. ANODE 1	PIN 1. BASE 1	PIN 1. BASE 1	PIN 1. VIN1
2. ANODE 2	2. EMITTER 2	2. EMITTER 1	2. VCC
3. ANODE 3	3. COLLECTOR 2	3. COLLECTOR 2	3. VOUT2
4. CATHODE 3	4. BASE 2	4. BASE 2	4. VIN2
5. CATHODE 2	5. EMITTER 1	5. EMITTER 2	5. GND
6. CATHODE 1	6. COLLECTOR 1	6. COLLECTOR 1	6. VOUT1
STYLE 21:	STYLE 22:	STYLE 23:	STYLE 24:
PIN 1. ANODE 1	PIN 1. D1 (i)	PIN 1. Vn	PIN 1. CATHODE
2. N / C	2. GND	2. CH 1	2. ANODE
3. ANODE 2	3. D2 (i)	3. Vp	3. CATHODE
4. CATHODE 2	4. D2 (c)	4. N/C	4. CATHODE
5. N/C	5. VBUS	5. CH 2	5. CATHODE
6. CATHODE 1	6. D1 (c)	6. N/C	6. CATHODE
STYLE 27:	STYLE 28:	STYLE 29:	STYLE 30:
PIN 1. BASE 2	PIN 1. DRAIN	PIN 1. ANODE	PIN 1. SOURCE 1
2. BASE 1	2. DRAIN	2. ANODE	2. DRAIN 2
3. COLLECTOR 1	3. GATE	3. COLLECTOR	3. DRAIN 2
4. EMITTER 1	4. SOURCE	4. EMITTER	4. SOURCE 2
5. EMITTER 2	5. DRAIN	5. BASE/ANODE	5. GATE 1
6. COLLECTOR 2	6. DRAIN	6. CATHODE	6. DRAIN 1

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

| DOCUMENT NUMBER: | 98ASB42985B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88/SC70-6/SOT-363 | PAGE 2 OF 2 |

[^1]onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: onsemi and OnSeMi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

[^1]: onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

