onsemi

MOSFET – Dual N-Channel, POWERTRENCH[®]

100 V, 25 A, 19 m Ω

FDMD82100

General Description

This device includes two 100 V N–Channel MOSFETs in a dual Power (3.3 mm X 5 mm) package. HS source and LS Drain internally connected for half/full bridge, low source inductance package, low $r_{DS(on)}/Qg$ FOM silicon.

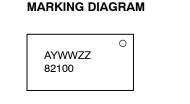
Features

- Max $r_{DS(on)} = 19 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 7 \text{ A}$
- Max $r_{DS(on)} = 33 \text{ m}\Omega$ at $V_{GS} = 6 \text{ V}$, $I_D = 5.5 \text{ A}$
- Ideal for Flexible Layout in Primary Side of Bridge Topology
- 100% UIL Tested
- Kelvin High Side MOSFET Drive Pin-out Capability
- This Device is Pb-Free, Halide Free and RoHS Compliant

Applications

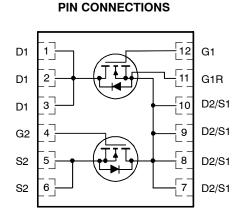

- Synchronous Buck : Primary Switch of Half/Full bridge converter for telecom
- Motor Bridge: Primary Switch of Half/Full bridge converter for BLDC motor
- MV POL: 48 V Synchronous Buck Switch

MOSFET MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)


Symbol		Parameter		Rating	Unit
V _{DS}	Drain to Source	e Voltage		100	V
V _{GS}	Gate to Source	Voltage		±20	V
I _D	Drain Current	Continuous	$T_C = 25^{\circ}C$	25	Α
		Continuous (Note 1a)	$T_A = 25^{\circ}C$	7	
		Pulsed (Note	4)	80	
E _{AS}	Single Pulse Av	alanche Ener	gy (Note 3)	121	mJ
PD	Power Dissipat	ion (Note 1a)	$T_A = 25^{\circ}C$	2.1	W
	Power Dissipat	ion (Note 1b)	$T_A = 25^{\circ}C$	1	
T _J , T _{STG}	Operating and Temperature Ra	0	on	–55 to + 150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

V _{DS}	r _{DS(ON)} MAX	I _D MAX
100 V	$19\mathrm{m}\Omega$ @ 10 V	25 A
	33 mΩ @ 6 V	



PQFN12 3.3X5, 0.65P CASE 483BN

= Assembly Plant Code

- = Date Code (Year & Week)
- = Lot Code = Specific Device Code

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 6 of this data sheet.

oology MARK

A YWW

ΖZ

82100

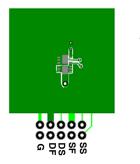
© Semiconductor Components Industries, LLC, 2013 February, 2023 – Rev. 3

THERMAL CHARACTERISTICS

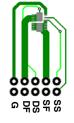
Symbol	Parameter		Ratings	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case	(Top Source)	3.1	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1a)	60	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	130	

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
OFF CHA	RACTERISTICS	·				
BV_{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$	100	_	-	V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, referenced to 25°C	-	70	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 80 \text{ V}, V_{GS} = 0 \text{ V}$	-	-	1	μA
I _{GSS}	Gate to Source Leakage Current	V_{GS} = ±20 V, V_{DS} = 0 V	-	_	±100	nA
ON CHAF	ACTERISTICS					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$	2	3.3	4	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, referenced to 25°C	-	-9	-	mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 7 A	-	15	19	mΩ
		$V_{GS} = 6 \text{ V}, \text{ I}_{D} = 5.5 \text{ A}$	-	23	33	
		V_{GS} = 10 V, I_D = 7 A, T_J = 125°C	-	27	35	
9 FS	Forward Transconductance	$V_{DS} = 5 V, I_D = 7 A$	-	18	-	S
DYNAMIC	CHARACTERISTICS					
C _{iss}	Input Capacitance	V_{DS} = 50 V, V_{GS} = 0 V, f = 1 MHz	-	805	1070	pF
C _{oss}	Output Capacitance	-	-	176	235	pF
C _{rss}	Reverse Transfer Capacitance	-	-	8	15	pF
Rg	Gate Resistance		0.1	1.8	3.6	Ω
SWITCHII	NG CHARACTERISTICS					
td _(on)	Turn-On Delay Time	$V_{DD} = 50 \text{ V}, \text{ I}_{D} = 7 \text{ A},$	-	9.4	19	ns
t _r	Rise Time	V_{GS} = 10 V, R_{GEN} = 6 Ω	-	3.2	10	
t _{d(off)}	Turn-Off Delay Time	7	-	15	27	
t _f	Fall Time	7	-	3.3	10	1
0	Tatal Gata Charge	1/2 = 0/2 to $10/2/2 = 50/2$ = 7.0		10	17	<u> </u>


Q _{g(TOT)}	Total Gate Charge	V_{GS} = 0 V to 10 V, V_{DD} = 50 V, I_{D} = 7 A	-	12	17	nC
		V_{GS} = 0 V to 6 V, V_{DD} = 50 V, I_{D} = 7 A	-	8	11	
Q _{gs}	Gate to Source Charge	$V_{DD} = 50 \text{ V}, \text{ I}_{D} = 7 \text{ A}$	-	3.9	-	nC
Q _{gd}	Gate to Drain "Miller" Charge		-	2.7	-	nC
DRAIN-S	OURCE DIODE CHARACTERISTICS					

	V_{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 7 A (Note 2)	-	0.8	1.2	V
	t _{rr}	Reverse Recovery Time	I _F = 7 A, di/dt = 100 A/μs	-	46	74	ns
ſ	Q _{rr}	Reverse Recovery Charge		-	48	77	nC


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:

1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a. $60^{\circ}C/W$ when mounted on a 1 in² pad of 2 oz copper

b. 130°C/W when mounted on a minimum pad of 2 oz copper

- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%. 3. E_{AS} of 121 mJ is based on starting T_J = 25°C, L = 3 mH, I_{AS} = 9 A, V_{DD} = 100 V, V_{GS} = 10 V, 100% tested at L = 0.1 mH, I_{AS} = 30 A. 4. Pulse Id refers to Figure 11. Forward Bias Safe Operation Area.

TYPICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

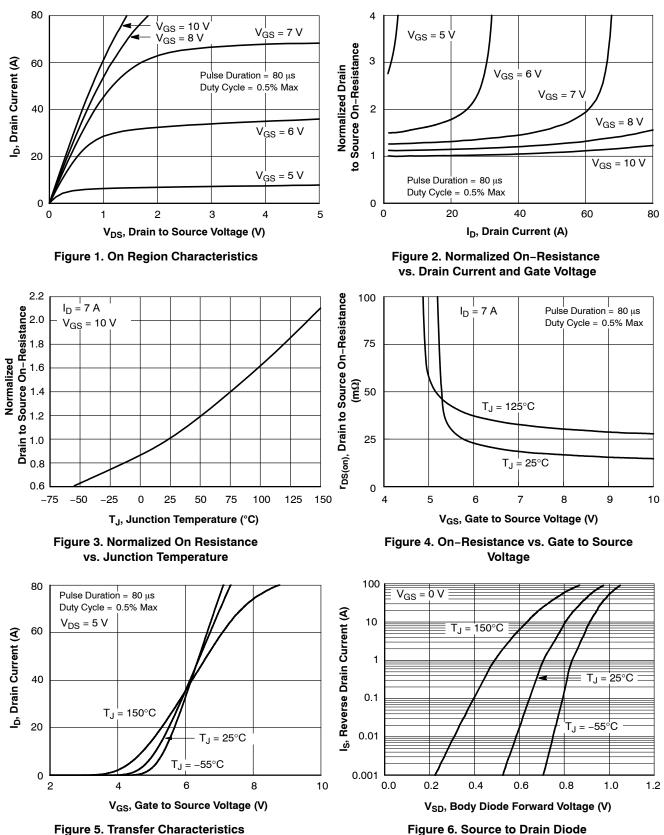
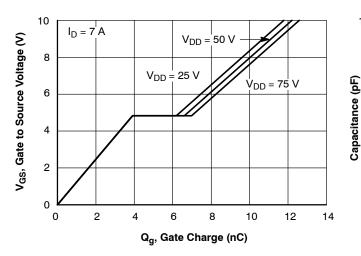
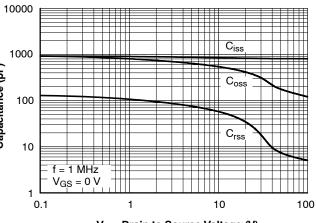
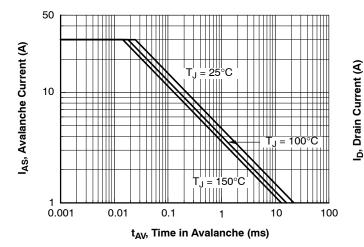
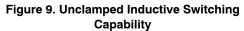




Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)





V_{DS}, Drain to Source Voltage (V)

Figure 8. Capacitance vs. Drain to Source Voltage

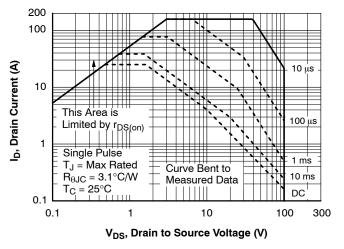


Figure 11. Forward Bias Safe Operating Area

 $\begin{array}{c} 40 \\ 30 \\ 20 \\ 10 \\ 0 \\ 25 \\ 50 \\ 75 \\ 100 \\ 125 \\ 100 \\ 125 \\ 100 \\ 125 \\ 150 \end{array}$

T_C, Case Temperature (°C)

Figure 10. Maximum Continuous Drain Current vs. Case Temperature

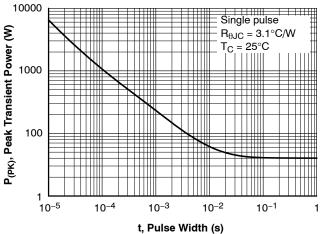


Figure 12. Single Pulse Maximum

Power Dissipation

TYPICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ UNLESS OTHERWISE NOTED) (CONTINUED)

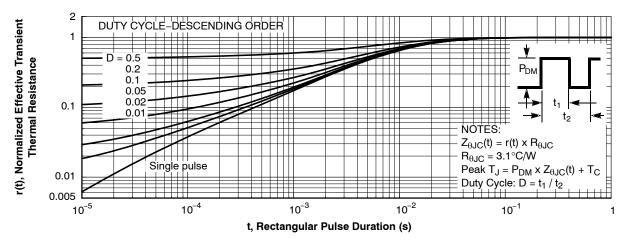
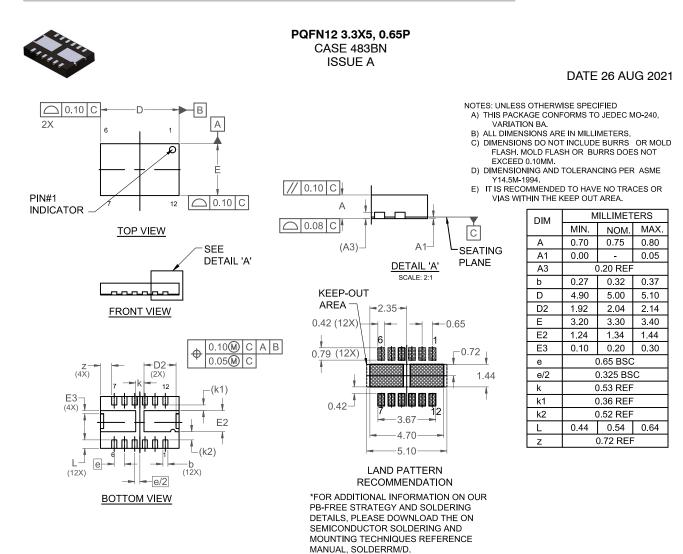



Figure 13. Junction-to-Case Transient Thermal Response Curve

Device	Device Marking	Package	Reel Size	Tape Width	Quantity
FDMD82100	82100	PQFN12 3.3x5, 0.65P (Power 3.3 x 5) (Pb–Free, Halide Free)	13"	12 mm	3000 Units

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

DOCUMENT NUMBER: 98AON13670G Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	t Repositor
DESCRIPTION: PQFN12 3.3X5, 0.65P PAGE	1 OF 1

© Semiconductor Components Industries, LLC, 2019

rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative