One Watt Darlington Transistors

NPN Silicon

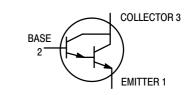
Features

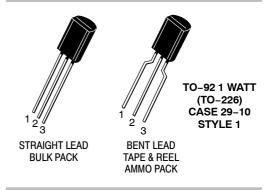
• Pb-Free Packages are Available*

MAXIMUM RATINGS

Rating		Symbol	Value	Unit
Collector - Emitter Voltage	MPSW45 MPSW45A	V _{CES}	40 50	Vdc
Collector - Base Voltage	MPSW45 MPSW45A	V _{CBO}	50 60	Vdc
Emitter - Base Voltage	V _{EBO}	12	Vdc	
Collector Current – Continuo	Ic	1.0	Adc	
Total Device Dissipation @ 7 Derate above 25°C	P _D	1.0 8.0	W mW/°C	
Total Device Dissipation @ 7 Derate above 25°C	P _D	2.5 20	W mW/°C	
Operating and Storage Junc Temperature Range	tion	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	125	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	50	°C/W


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

MPSW45x = Device Code

x = 45A Devices

A = Assembly Location

Y = Year WW = Work Week • Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage (I _C = 100 μAdc, V _{BE} = 0)	MPSW45 MPSW45A	V _(BR) CES	40 50	- -	Vdc
Collector – Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)	MPSW45 MPSW45A	V _{(BR)CBO}	50 60	-	Vdc
Emitter – Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)		V _{(BR)EBO}	12	-	Vdc
Collector Cutoff Current $(V_{CB} = 30 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 40 \text{ Vdc}, I_E = 0)$	MPSW45 MPSW45A	I _{CBO}	- -	100 100	nAdc
Emitter Cutoff Current (V _{EB} = 10 Vdc, I _C = 0)		I _{EBO}	_	100	nAdc
ON CHARACTERISTICS (Note 1)					
DC Current Gain $ \begin{array}{l} (I_C=200 \text{ mAdc, V}_{CE}=5.0 \text{ Vdc)} \\ (I_C=500 \text{ mAdc, V}_{CE}=5.0 \text{ Vdc)} \\ (I_C=1.0 \text{ Adc, V}_{CE}=5.0 \text{ Vdc)} \end{array} $		h _{FE}	25,000 15,000 4,000	150,000 - -	-
Collector – Emitter Saturation Voltage ($I_C = 1.0 \text{ Adc}$, $I_B = 2.0 \text{ mAdc}$)		V _{CE(sat)}	-	1.5	Vdc
Base-Emitter Saturation Voltage (I _C = 1.0 Adc, I _B = 2.0 mAdc)		V _{BE(sat)}	-	2.0	Vdc
Base – Emitter On Voltage (I _C = 1.0 Adc, V _{CE} = 5.0 Vdc)		V _{BE(on)}	_	2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS			•	•	
Current–Gain – Bandwidth Product (I_C = 200 mAdc, V_{CE} = 5.0 Vdc, f = 100 MHz)		f _T	100	-	MHz
Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)		C _{cb}	_	6.0	pF

^{1.} Pulse Test: Pulse Width \leq 300 μ s; Duty Cycle \leq 2.0%.

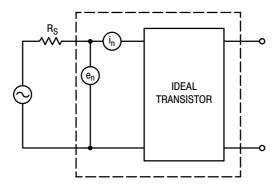


Figure 1. Transistor Noise Model

NOISE CHARACTERISTICS

 $(V_{CE} = 5.0 \text{ Vdc}, T_A = 25^{\circ}C)$

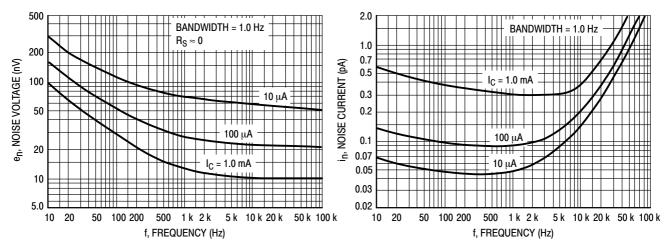


Figure 2. Noise Voltage

Figure 3. Noise Current

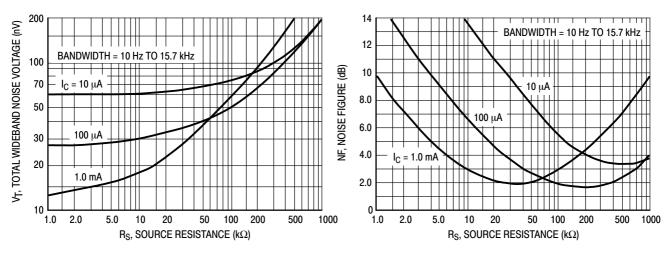


Figure 4. Total Wideband Noise Voltage

Figure 5. Wideband Noise Figure

SMALL-SIGNAL CHARACTERISTICS

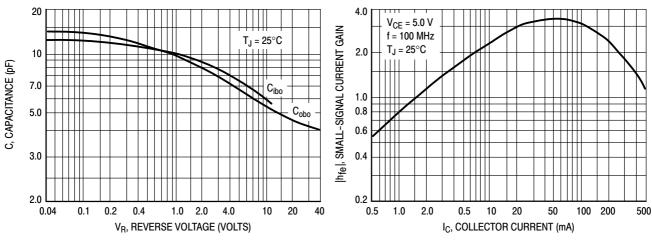


Figure 6. Capacitance

Figure 7. High Frequency Current Gain

Figure 8. DC Current Gain

Figure 9. Collector Saturation Region

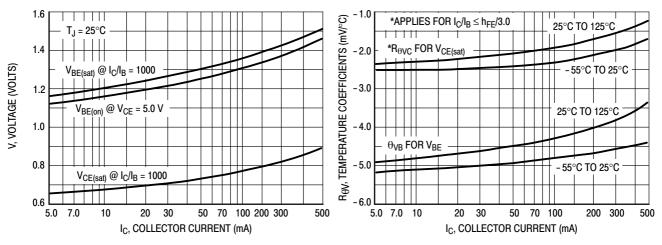


Figure 10. "On" Voltages

Figure 11. Temperature Coefficients

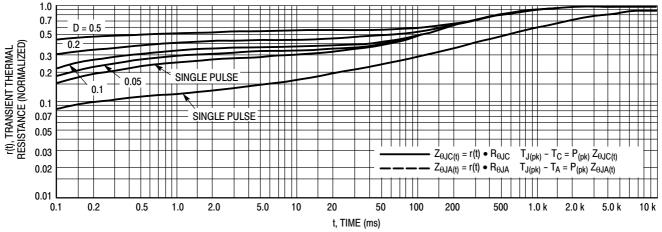
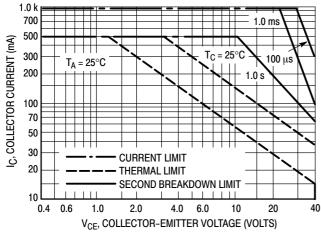
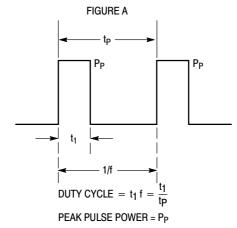
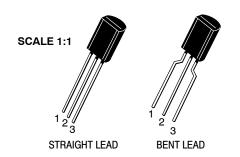



Figure 12. Thermal Response

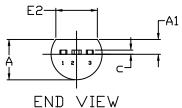


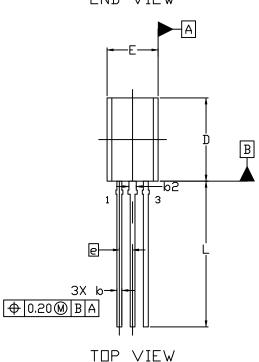

Figure 13. Active Region Safe Operating Area

Design Note: Use of Transient Thermal Resistance Data

ORDERING INFORMATION

Device	Package	Shipping [†]
MPSW45G	TO-92 (Pb-Free)	5,000 Units / Box
MPSW45RLREG	TO-92 (Pb-Free)	2,000 / Tape & Reel
MPSW45A	TO-92	5,000 Units / Box
MPSW45AG	TO-92 (Pb-Free)	5,000 Units / Box
MPSW45ARLRA	TO-92	2,000 / Tape & Reel
MPSW45ARLRAG	TO-92 (Pb-Free)	2,000 / Tape & Reel
MPSW45AZL1	TO-92	2,000 / Ammo Pack
MPSW45AZL1G	TO-92 (Pb-Free)	2,000 / Ammo Pack


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.



TO-92 (TO-226) 1 WATT CASE 29-10 ISSUE D

DATE 05 MAR 2021

STRAIGHT LEAD

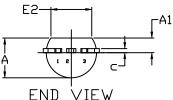
NOTES:

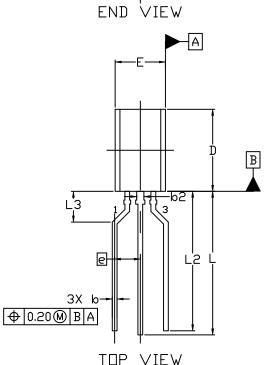
- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS.
- 4. DIMENSION 6 AND 62 DOES NOT INCLUDE DAMBAR PROTRUSION. LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 0.20. DIMENSION 62 LOCATED ABOVE THE DAMBAR PORTION OF MIDDLE LEAD.

	MILLIMETERS						
DIM	MIN.	N□M.	MAX.				
Α	3.75	3.90	4.05				
A1	1.28	1.43	1.58				
b	0.38	0.465	0.55				
b2	0.62	0.70	0.78				
c	0.35	0.40	0.45				
D	7.85	8.00	8.15				
E	4.75	4.90	5.05				
E2	3.90						
е	1.27 BSC						
L	13.80	14.00	14.20				

STYLES AND MARKING ON PAGE 3

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 1 OF 3		


ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.



TO-92 (TO-226) 1 WATT CASE 29-10 ISSUE D

DATE 05 MAR 2021

FORMED LEAD

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS.
- 4. DIMENSION 6 AND 62 DOES NOT INCLUDE DAMBAR PROTRUSION. LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 0.20. DIMENSION 62 LOCATED ABOVE THE DAMBAR PORTION OF MIDDLE LEAD.

	MILLIMETERS						
DIM	MIN.	N□M.	MAX.				
Α	3.75	3.90	4.05				
A1	1.28	1.43	1.58				
b	0.38	0.465	0.55				
b2	0.62	0.70	0.78				
С	0.35	0.40	0.45				
D	7.85	8.00	8.15				
Е	4.75	4.90	5.05				
E2	3.90						
е		2.50 BSC					
L	13.80	14.00	14.20				
L2	13.20	13.60	14.00				
L3	3.00 REF						

STYLES AND MARKING ON PAGE 3

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 2 OF 3		

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TO-92 (TO-226) 1 WATT

CASE 29-10 ISSUE D

DATE 05 MAR 2021

STYLE 1: PIN 1. 2. 3.	EMITTER BASE COLLECTOR	STYLE 2: PIN 1. 2. 3.	BASE EMITTER COLLECTOR	STYLE 3: PIN 1. 2. 3.	ANODE ANODE CATHODE	PIN 1.	CATHODE CATHODE ANODE		DRAIN SOURCE GATE
	GATE	PIN 1.	SOURCE DRAIN	PIN 1. 2.	DRAIN GATE	STYLE 9: PIN 1. 2. 3.	BASE 1 EMITTER		
2.	CATHODE & ANODE	2.	MAIN TERMINAL 1 GATE MAIN TERMINAL 2	2.	ANODE 1 GATE CATHODE 2	2.	EMITTER		
2.	ANODE	PINI 1	COLLECTOR BASE EMITTER	PIN 1	ANODE	DINI 1		2.	NOT CONNECTED CATHODE ANODE
2.			GATE	PIN 1. 2.	GATE SOURCE DRAIN	PIN 1. 2.	EMITTER COLLECTOR/ANODE CATHODE	PIN 1. 2.	
	V _{CC}		MT SUBSTRATE	PIN 1. 2.	CATHODE	PIN 1. 2.		PIN 1. 2.	
		STYLE 32: PIN 1. 2. 3.	BASE COLLECTOR EMITTER	STYLE 33: PIN 1. 2. 3.	RETURN	PIN 1. 2.	INPUT GROUND LOGIC		

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code

A = Assembly Location

L = Wafer Lot Y = Year

W = Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 3 OF 3		

ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer p

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative