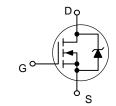
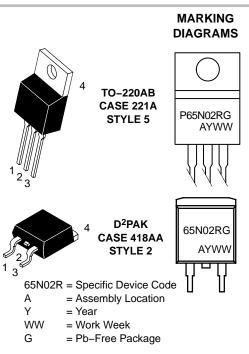
Power MOSFET 65 A, 24 V N-Channel TO-220, D²PAK

Features


- Planar HD3e Process for Fast Switching Performance
- Low R_{DSon} to Minimize Conduction Loss
- Low C_{iss} to Minimize Driver Loss
- Low Gate Charge
- Pb–Free Packages are Available*



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX	
24 V	8.4 mΩ @ 10 V	65 A	

PIN ASSIGNMENT

PIN	FUNCTION
1	Gate
2	Drain
3	Source
4	Drain

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ORDERING INFORMATION

MAXIMUM RATINGS (T_J = 25°C Unless otherwise specified)

	-		
Parameter	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	25	V _{dc}
Gate-to-Source Voltage - Continuous	V_{GS}	±20	V _{dc}
Thermal Resistance – Junction–to–Case Total Power Dissipation @ T _C = 25°C Drain Current –	${\sf R}_{ heta { m JC}} \ {\sf P}_{\sf D}$	2.0 62.5	°C/W W
Continuous @ $T_C = 25^{\circ}C$, Chip Continuous @ $T_C = 25^{\circ}C$, Limited by Package Single Pulse ($t_p = 10 \ \mu s$)	I _D I _D I _{DM}	65 58 160	A A A
Thermal Resistance – Junction–to–Ambient (Note 1) Total Power Dissipation @ $T_A = 25^{\circ}C$ Drain Current – Continuous @ $T_A = 25^{\circ}C$	R _{θJA} P _D I _D	67 1.86 10	°C/W W A
Thermal Resistance – Junction–to–Ambient (Note 2) Total Power Dissipation @ $T_A = 25^{\circ}C$ Drain Current – Continuous @ $T_A = 25^{\circ}C$	R _{θJA} P _D I _D	120 1.04 7.6	°C/W W A
Operating and Storage Temperature Range	T _J and T _{stg}	–55 to 150	°C
Single Pulse Drain-to-Source Avalanche Energy – Starting T _J = 25°C (V _{DD} = 50 V _{dc} , V _{GS} = 10 V _{dc} , I _L = 11 A _{pk} , L = 1 mH, R _G = 25 Ω)	E _{AS}	60	mJ
Maximum Lead Temperature for Soldering Purposes, 1/8" from Case for 10 Seconds	ΤL	260	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

- 1. When surface mounted to an FR4 board using 1 in. pad size, (Cu Area 1.127 in²).
- When surface mounted to an FR4 board using minimum recommended pad size, (Cu Area 0.412 in²).

Semiconductor Components Industries, LLC, 2005
 May, 2005 – Rev. 6

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

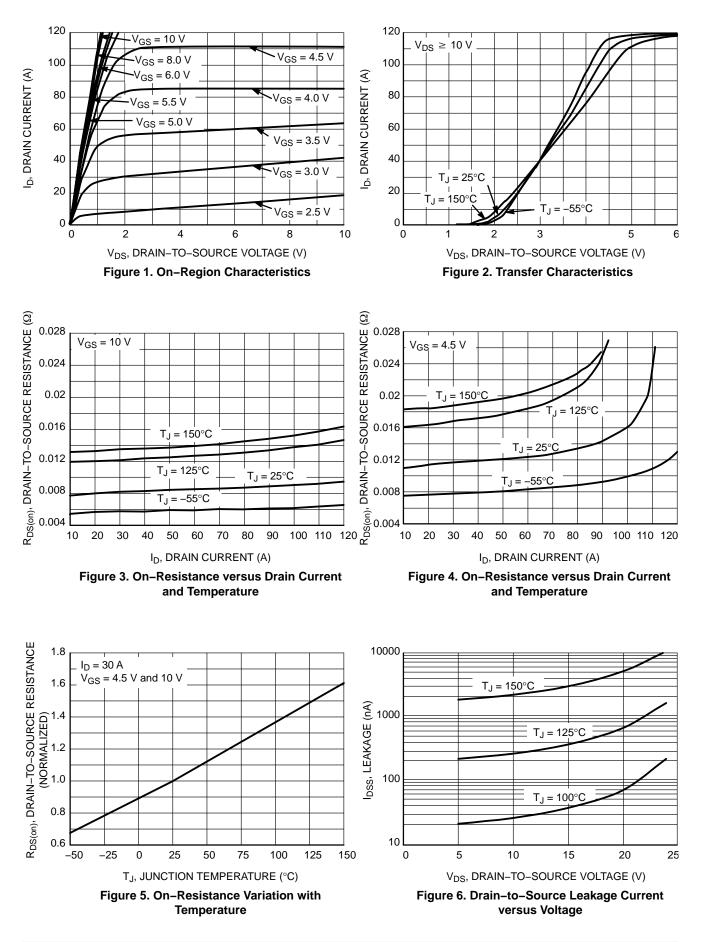
ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ Unless otherwise specified)

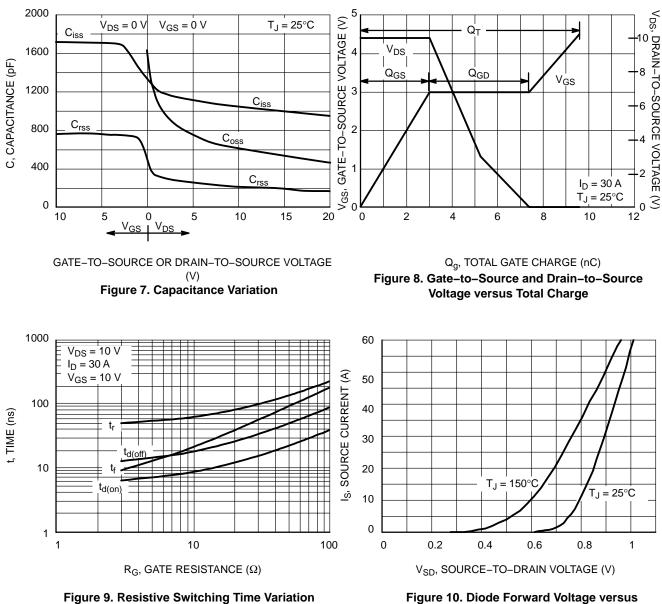
	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS		-	-	-	-	-
Drain-to-Source Breakdown ($V_{GS} = 0 V_{dc}$, $I_D = 250 \mu A$ Temperature Coefficient (Pos	V _{(BR)DSS}	24 -	27.5 25.5		V _{dc} mV/°C	
Zero Gate Voltage Drain Cur $ \begin{pmatrix} V_{DS} = 20 \ V_{dc}, \ V_{GS} = 0 \ V \\ (V_{DS} = 20 \ V_{dc}, \ V_{GS} = 0 \ V \\ \end{pmatrix} $	(dc)	I _{DSS}			1.5 10	μA _{dc}
Gate-Body Leakage Current (V _{GS} = ± 20 V _{dc} , V _{DS} = 0		I _{GSS}	_	_	±100	nA _{dc}
ON CHARACTERISTICS (N	ote 3)					
Gate Threshold Voltage (Not $(V_{DS} = V_{GS}, I_D = 250 \ \mu A_c$ Threshold Temperature Coef	lc)	V _{GS(th)}	1.0	1.5 4.1	2.0	V _{dc} mV/°C
$\begin{array}{l} \mbox{Static Drain-to-Source On-l} \\ (V_{GS} = 4.5 \ V_{dc}, \ I_D = 15 \ A \\ (V_{GS} = 10 \ V_{dc}, \ I_D = 20 \ A_c \\ (V_{GS} = 10 \ V_{dc}, \ I_D = 30 \ A_c \end{array}$	R _{DS(on)}	- - -	11.2 8.4 8.2	12.5 10.5 -	mΩ	
Forward Transconductance (Note 3) ($V_{DS} = 10 V_{dc}$, $I_D = 15 A_{dc}$)		9FS	_	27	_	Mhos
DYNAMIC CHARACTERIST	ICS					
Input Capacitance		C _{iss}	-	948	1330	pF
Output Capacitance	$(V_{DS} = 20 V_{dc}, V_{GS} = 0 V, f = 1 MHz)$	C _{oss}	-	456	640	1
Transfer Capacitance		C _{rss}	-	160	225	1
SWITCHING CHARACTERI	STICS (Note 4)					
Turn-On Delay Time		t _{d(on)}	-	7.0	-	ns
Rise Time	$(V_{GS} = 10 V_{dc}, V_{DD} = 10 V_{dc},$	t _r	-	53	-	
Turn-Off Delay Time	$I_D = 30 A_{dc}^{A}, R_G = 3 \Omega$	t _{d(off)}	-	14	-	
Fall Time		tf	-	10	-	
Gate Charge		QT	-	9.5	-	nC
	$(V_{GS} = 4.5 V_{dc}, I_D = 30 A_{dc}, V_{DS} = 10 V_{dc})$ (Note 3)	Q ₁	-	3.0	-	
		Q ₂	-	4.4	-	
SOURCE-DRAIN DIODE CH	IARACTERISTICS					
Forward On–Voltage		V _{SD}	- - -	0.88 1.10 0.80	1.2 - -	V _{dc}
Reverse Recovery Time		t _{rr}	-	29.1	_	ns
	$(l_{2} - 20 A \cdot M) = 0 M$	ta	-	13.6	-	1
	$(I_{S} = 30 A_{dc}, V_{GS} = 0 V_{dc}, dI_{S}/dt = 100 A/\mu s)$ (Note 3)	t _b	-	15.5	-	1
		H		+		-

Reverse Recovery Stored

Charge

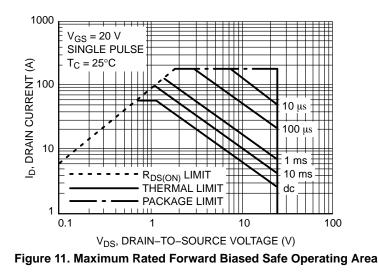
Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.


 Q_{RR}

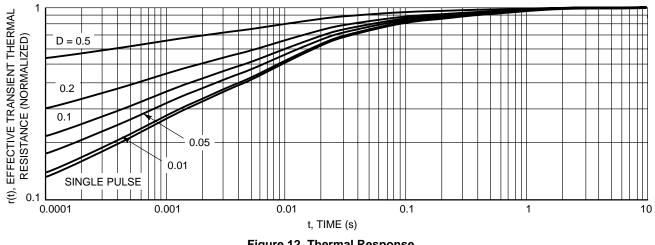

μC

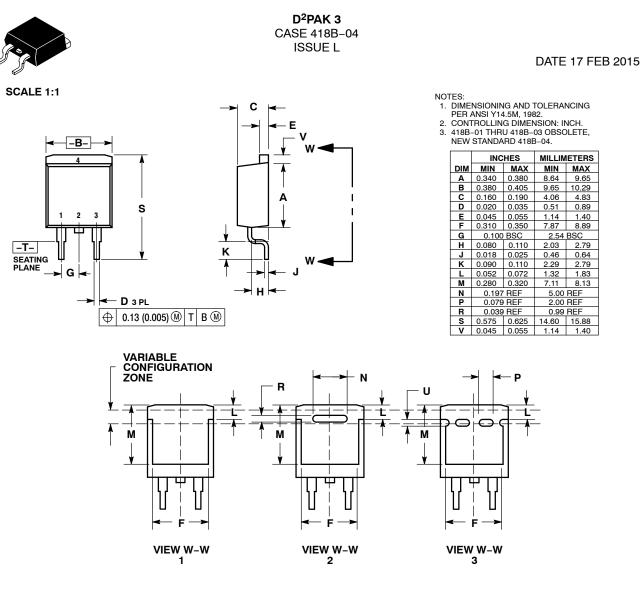
_

0.02


_

versus Gate Resistance



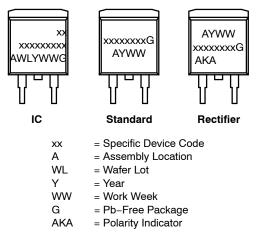

Figure 12. Thermal Response

ORDERING INFORMATION

Device	Package	Shipping [†]
NTB65N02R	D ² PAK	50 Units / Rail
NTB65N02RG	D ² PAK (Pb–Free)	50 Units / Rail
NTB65N02RT4	D ² PAK	800 / Tape & Reel
NTB65N02RT4G	D ² PAK (Pb–Free)	800 / Tape & Reel
NTP65N02R	TO-220AB	50 Units / Rail
NTP65N02RG	TO-220AB (Pb-Free)	50 Units / Rail

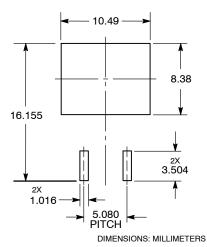
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:	STYLE 6:
PIN 1. BASE	PIN 1. GATE	PIN 1. ANODE	PIN 1. GATE	PIN 1. CATHODE	PIN 1. NO CONNECT
2. COLLECTOR	2. DRAIN	2. CATHODE	2. COLLECTOR	2. ANODE	2. CATHODE
3. EMITTER	SOURCE	ANODE	3. EMITTER	CATHODE	3. ANODE
4. COLLECTOR	4. DRAIN	4. CATHODE	4. COLLECTOR	4. ANODE	4. CATHODE


MARKING INFORMATION AND FOOTPRINT ON PAGE 2

DOCUMENT NUMBER:	98ASB42761B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	D ² PAK 3		PAGE 1 OF 2		
ON Semiconductor and (1) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.					

D²PAK 3 CASE 418B-04 ISSUE L


DATE 17 FEB 2015

GENERIC MARKING DIAGRAM*

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present.

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98ASB42761B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	D ² PAK 3		PAGE 2 OF 2		
ON Semiconductor and I are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.					

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative