High Speed, High Gain Bipolar NPN Power Transistor

with Integrated Collector–Emitter Diode and Built–in Efficient Antisaturation Network

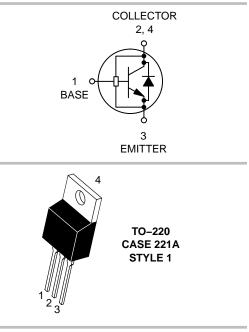
The BUL45D2G is state–of–art High Speed High gain BiPolar transistor (H2BIP). High dynamic characteristics and lot–to–lot minimum spread (± 150 ns on storage time) make it ideally suitable for light ballast applications. Therefore, there is no need to guarantee an h_{FE} window. It's characteristics make it also suitable for PFC application.

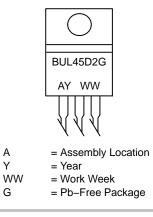
Features

- Low Base Drive Requirement
- High Peak DC Current Gain

- Extremely Low Storage Time Min/Max Guarantees Due to the H2BIP Structure which Minimizes the Spread
- Integrated Collector-Emitter Free Wheeling Diode
- Fully Characterized and Guaranteed Dynamic V_{CE(sat)}
- "6 Sigma" Process Providing Tight and Reproductible Parameter Spreads
- These Devices are Pb-Free and are RoHS Compliant*

MAXIMUM RATINGS				
Rating	Symbol	Value	Unit	
Collector-Emitter Sustaining Voltage	V _{CEO}	400	Vdc	
Collector-Base Breakdown Voltage	V _{CBO}	700	Vdc	
Collector-Emitter Breakdown Voltage	V _{CES}	700	Vdc	
Emitter-Base Voltage	V _{EBO}	12	Vdc	
Collector Current – Continuous	Ι _C	5	Adc	
Collector Current – Peak (Note 1)	I _{CM}	10	Adc	
Base Current – Continuous	Ι _Β	2	Adc	
Base Current – Peak (Note 1)	I _{BM}	4	Adc	
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	75 0.6	W W/°C	
Operating and Storage Temperature	T _J , T _{stg}	-65 to +150	°C	


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Pulse Test: Pulse Width = 5 ms, Duty Cycle \leq 10%.


ON Semiconductor[®]

www.onsemi.com

POWER TRANSISTOR 5.0 AMPERES, 700 VOLTS, 75 WATTS

MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping
BUL45D2G	TO–220 (Pb–Free)	50 Units / Rail

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

THERMAL CHARACTERISTICS

Characteristics	Symbol	Мах	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	1.65	°C/W
Thermal Resistance, Junction-to-Ambient	R_{\thetaJA}	62.5	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 5 Seconds	ΤL	260	°C

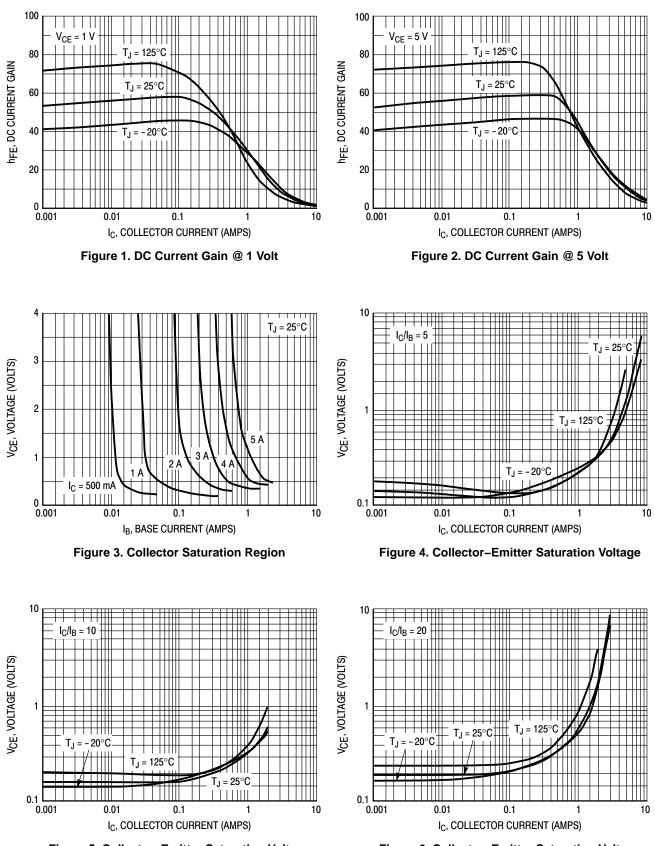
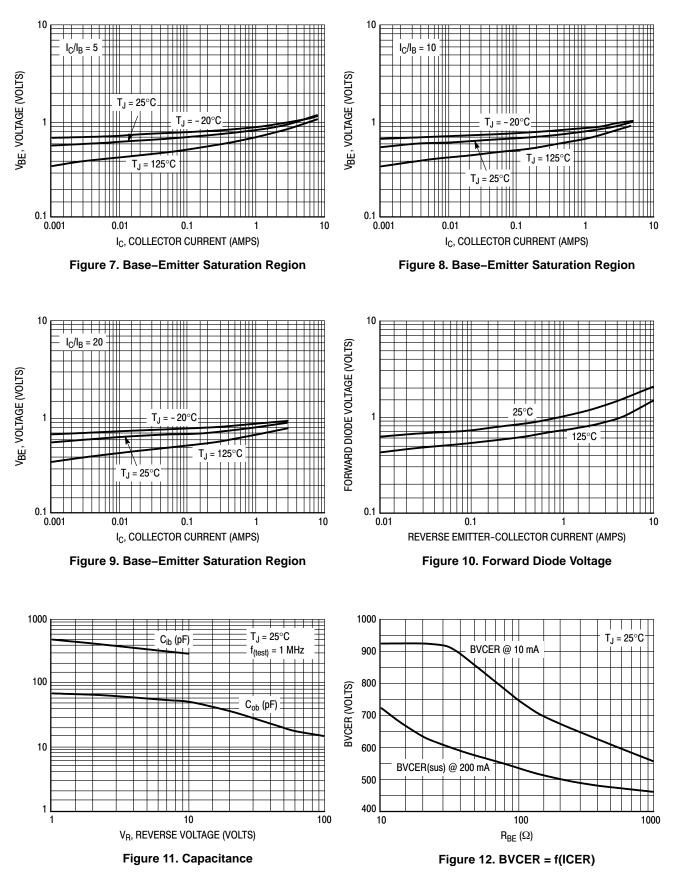
ELECTRICAL CHARACTERISTICS (T_C = 25° C unless otherwise noted)

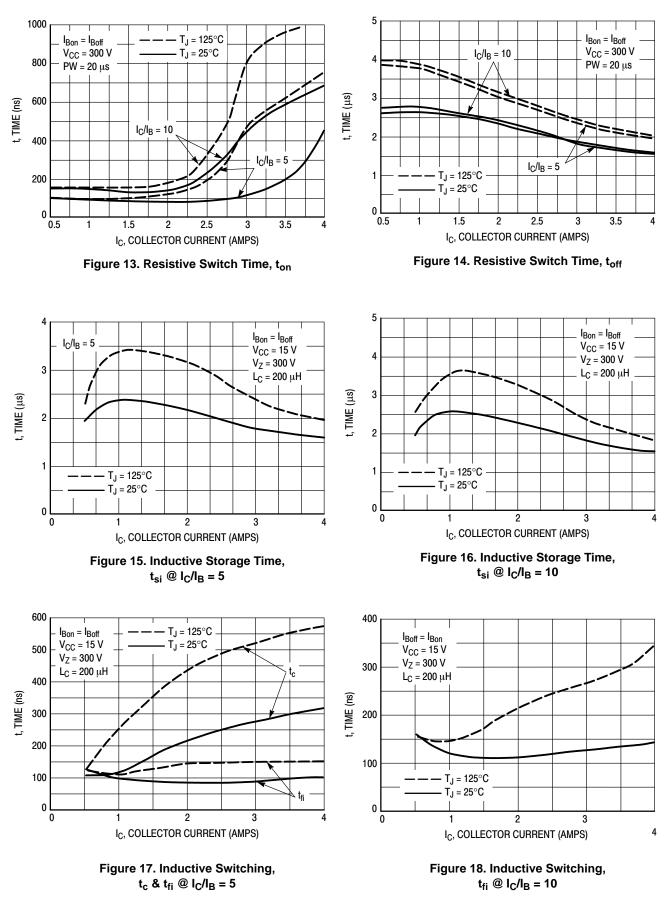
Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Sustaining Voltage $(I_C = 100 \text{ mA}, L = 25 \text{ mH})$	V _{CEO(sus)}	400	450	_	Vdc
Collector–Base Breakdown Voltage (I _{CBO} = 1 mA)	V _{CBO}	700	910	_	Vdc
Emitter–Base Breakdown Voltage (I _{EBO} = 1 mA)	V _{EBO}	12	14.1	_	Vdc
Collector Cutoff Current (V_{CE} = Rated V_{CEO} , I_B = 0)	ICEO	_	_	100	μAdc
Collector Cutoff Current $(V_{CE} = Rated V_{CES}, V_{EB} = 0)$ @ T _C = 25°C @ T _C = 125°C $(V_{CE} = 500 V, V_{EB} = 0)$ @ T _C = 125°C	ICES	- -		100 500 100	μAdc
Emitter–Cutoff Current ($V_{EB} = 10 \text{ Vdc}, I_C = 0$)	I _{EBO}	_	_	100	μAdc
ON CHARACTERISTICS				I	
Base-Emitter Saturation Voltage ($I_C = 0.8$ Adc, $I_B = 80$ mAdc) @ $T_C = 25^{\circ}C$	V _{BE(sat)}	_	0.8	1	Vdc
@ $T_{C} = 125^{\circ}C$ ($I_{C} = 2 \text{ Adc}, I_{B} = 0.4 \text{ Adc}$) @ $T_{C} = 25^{\circ}C$ @ $T_{C} = 125^{\circ}C$		- -	0.7 0.89 0.79	0.9 1 0.9	
Collector-Emitter Saturation Voltage $(I_{C} = 0.8 \text{ Adc}, I_{B} = 80 \text{ mAdc})$ $@ T_{C} = 25^{\circ}C$ $@ T_{C} = 125^{\circ}C$ $(I_{C} = 2 \text{ Adc}, I_{B} = 0.4 \text{ Adc})$ $@ T_{C} = 25^{\circ}C$ $@ T_{C} = 125^{\circ}C$ $(I_{C} = 0.8 \text{ Adc}, I_{B} = 40 \text{ mAdc})$ $@ T_{C} = 25^{\circ}C$ $@ T_{C} = 125^{\circ}C$	V _{CE(sat)}		0.28 0.32 0.32 0.38 0.46 0.62	0.4 0.5 0.5 0.6 0.75 1	Vdc
DC Current Gain (I _C = 0.8 Adc, V _{CE} = 1 Vdc) @ T _C = 25°C @ T _C = 125°C (I _C = 2 Adc, V _{CE} = 1 Vdc) @ T _C = 25°C @ T _C = 125°C	h _{FE}	22 20 10 7	34 29 14 9.5		_
DIODE CHARACTERISTICS			•		
Forward Diode Voltage $(I_{EC} = 1 \text{ Adc})$ $@ T_C = 25^{\circ}C$ $@ T_C = 125^{\circ}C$ $(I_{EC} = 2 \text{ Adc})$ $@ T_C = 25^{\circ}C$ $@ T_C = 25^{\circ}C$	V _{EC}	- -	1.04 0.7 1.2	1.5 - 1.6	V
@ $T_{C}^{\circ} = 125^{\circ}C$ ($I_{EC} = 0.4 \text{ Adc}$) @ $T_{C} = 25^{\circ}C$ @ $T_{C} = 125^{\circ}C$		- - -	- 0.85 0.62	- 1.2 -	

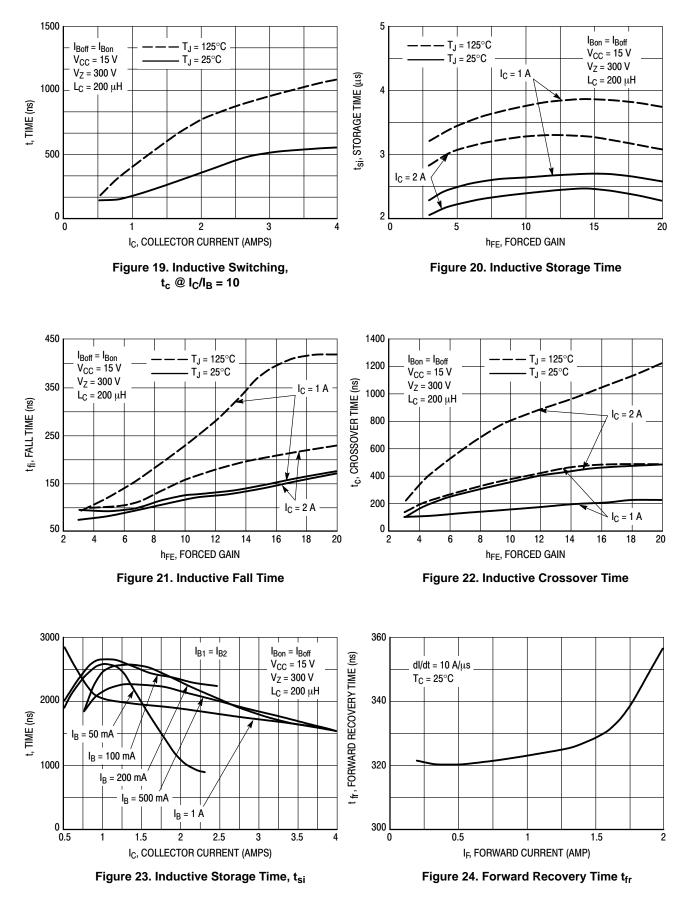
	Characteristic			Symbol	Min	Тур	Max	Unit
DIODE CHARACTERISTIC	cs							
Forward Recovery Time (see Figure 27) $(I_F = 1 \text{ Adc}, \text{ di/dt} = 10 \text{ A/}\mu\text{s})$				T _{fr}				ns
@ T _C = 25°C (I _F = 2 Adc, di/dt = 10 A/μs) @ T _C = 25°C					-	330 360	_	
($I_{F} = 0.4 \text{ Adc}, \text{ di/dt} = 10 \text{ A/}\mu\text{s}$) @ $T_{C} = 25^{\circ}\text{C}$				_	320	_		
OYNAMIC CHARACTERIS	STICS			<u> </u>		Į	<u></u>	
Current Gain Bandwidth ($I_C = 0.5 \text{ Adc}, V_{CE} = 10$) Vdc, f = 1 MHz)			f _T	_	13	_	MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}, I_E = 0, 1$	f = 1 MHz)			C _{ob}	_	50	75	pF
Input Capacitance (V _{EB} = 8 Vdc)				C _{ib}	_	340	500	pF
OYNAMIC SATURATION	VOLTAGE							
Dynamic Saturation Voltage:	$I_{C} = 1 \text{ A}$ $I_{B1} = 100 \text{ mA}$ $V_{CC} = 300 \text{ V}$	@ 1 μs	@ T _C = 25°C @ T _C = 125°C	V _{CE(dsat)}	-	3.7 9.4		V
Determined 1 μs and 3 μs respectively after rising I _{B1} reaches		@ 3 µs	@ T _C = 25°C @ T _C = 125°C		-	0.35 2.7		V
90% of final I _{B1}	I _C = 2 A I _{B1} = 0.8 A V _{CC} = 300 V	@ 1 μs	@ T _C = 25°C @ T _C = 125°C		-	3.9 12		V
		@ 3 µs	@ T _C = 25°C @ T _C = 125°C		-	0.4 1.5		V
SWITCHING CHARACTER	RISTICS: Resistive	Load (D (-	dth – 20 us)				
Turn-on Time	RISTICS: Resistive Load (D.C $I_C = 2 \text{ Adc}, I_{B1} = 0.4 \text{ Adc}$ $I_{B2} = 1 \text{ Adc}$ $V_{CC} = 300 \text{ Vdc}$		@ $T_C = 25^{\circ}C$ @ $T_C = 125^{\circ}C$	t _{on}	_	90 105	150 -	ns
Turn–off Time			@ T _C = 25°C @ T _C = 125°C	t _{off}	-	1.15 1.5	1.3	μs
Turn-on Time	I _C = 2 Adc, I _{B1} = 0 I _{B2} = 0.4 Ad		@ T _C = 25°C @ T _C = 125°C	t _{on}	-	90 110	150 -	ns
Turn-off Time	$V_{CC} = 300 \text{ Vdc}$		@ T _C = 25°C @ T _C = 125°C	t _{off}	2.1	- 3.1	2.4	μs
SWITCHING CHARACTER	RISTICS: Inductive	Load (Val		= 15 V. L = 20	Ю uH)			
Fall Time	$I_{C} = 1 \text{ Adc}$ $I_{B1} = 100 \text{ mAdc}$ $I_{B2} = 500 \text{ mAdc}$		@ $T_C = 25^{\circ}C$ @ $T_C = 125^{\circ}C$	t _f		90 93	150 -	ns
Storage Time			@ T _C = 25°C @ T _C = 125°C	t _s	-	0.72 1.05	0.9	μs
Crossover Time			@ T _C = 25°C @ T _C = 125°C	t _c	-	95 95	150 -	ns
Fall Time	$I_{C} = 2 \text{ Adc}$ $I_{B1} = 0.4 \text{ Adc}$ $I_{B2} = 0.4 \text{ Adc}$		@ T _C = 25°C @ T _C = 125°C	t _f		80 105	150 _	ns
Storage Time			@ $T_C = 25^{\circ}C$ @ $T_C = 125^{\circ}C$	t _s	1.95	- 2.9	2.25	μS
Crossover Time			@ $T_C = 25^{\circ}C$ @ $T_C = 125^{\circ}C$	t _c	-	225 450	300	ns

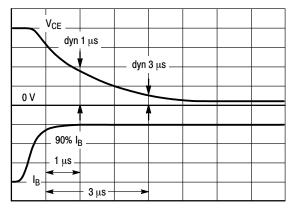
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

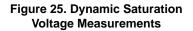
TYPICAL STATIC CHARACTERISTICS

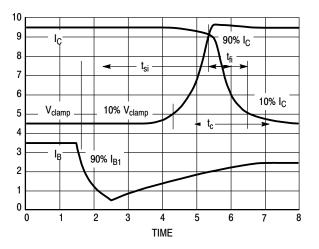




Figure 5. Collector–Emitter Saturation Voltage




TYPICAL SWITCHING CHARACTERISTICS


TYPICAL SWITCHING CHARACTERISTICS



TYPICAL SWITCHING CHARACTERISTICS

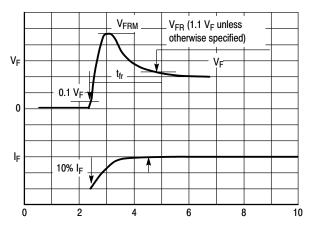
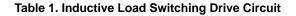
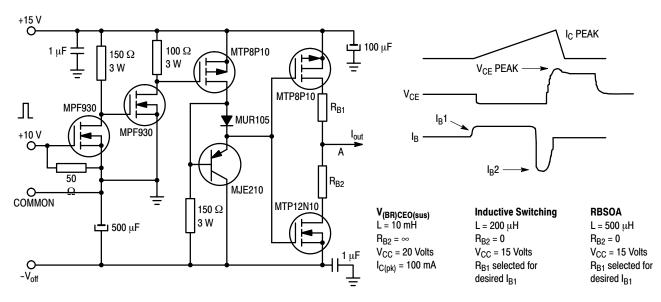




Figure 27. t_{fr} Measurements

TYPICAL SWITCHING CHARACTERISTICS

TYPICAL CHARACTERISTICS

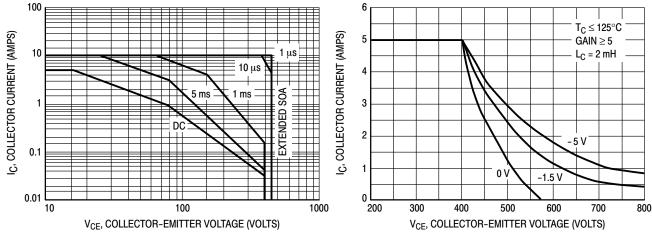


Figure 28. Forward Bias Safe Operating Area

Figure 29. Reverse Bias Safe Operating Area

TYPICAL CHARACTERISTICS

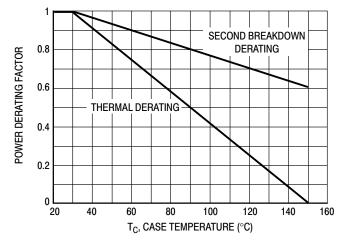
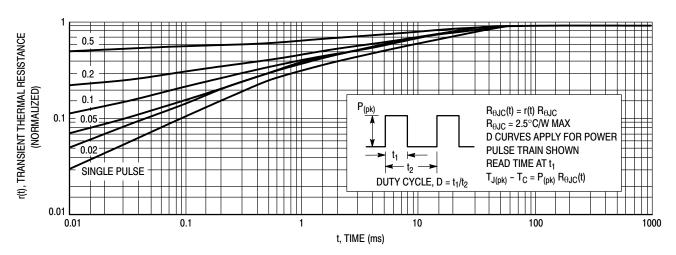



Figure 30. Forward Bias Power Derating

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C-V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 28 is based on $T_C = 25^{\circ}C$; $T_{J(pk)}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $T_C > 25^{\circ}C$. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 28 may be found at any case temperature by using the appropriate curve on Figure 30.

 $T_{J(pk)}$ may be calculated from the data in Figure 31. At any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. For inductive loads, high voltage and current must be sustained simultaneously during turn–off with the base to emitter junction reverse biased. The safe level is specified as a reverse biased safe operating area (Figure 29). This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode.

TYPICAL THERMAL RESPONSE

Figure 31. Typical Thermal Response ($Z_{\theta JC}(t)$) for BUL45D2

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative