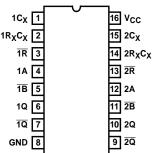


CD54HC4538, CD74HC4538, CD54HCT4538

Data sheet acquired from Harris Semiconductor SCHS123E

High-Speed CMOS Logic Dual Retriggerable Precision Monostable Multivibrator

June 1998 - Revised October 2003


Features

- · Retriggerable/Resettable Capability
- Trigger and Reset Propagation Delays Independent of $R_X,\,C_X$
- · Triggering from the Leading or Trailing Edge
- Q and $\overline{\mathbf{Q}}$ Buffered Outputs Available
- Separate Resets
- . Wide Range of Output Pulse Widths
- Schmitt Trigger Input on A and B Inputs
- Retrigger Time is Independent of C_X
- Fanout (Over Temperature Range)

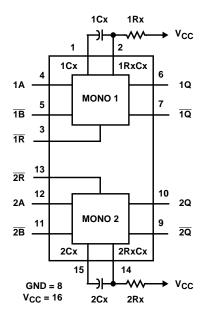
 - Bus Driver Outputs 15 LSTTL Loads
- Wide Operating Temperature Range . . . -55°C to 125°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- HC Types
 - 2V to 6V Operation
 - High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} at V_{CC} = 5V
- HCT Types
 - 4.5V to 5.5V Operation
 - Direct LSTTL Input Logic Compatibility,
 V_{IL}= 0.8V (Max), V_{IH} = 2V (Min)
 - CMOS Input Compatibility, $I_I \le 1\mu A$ at V_{OL} , V_{OH}

Pinout

CD54HC4538, CD54HCT4538 (CERDIP) CD74HC4538 (PDIP, SOIC, SOP, TSSOP) CD74HCT4538 (PDIP, SOIC) TOP VIEW

Description

The 'HC4538 and 'HCT4538 are dual retriggerable/resettable monostable precision multivibrators for fixed voltage timing applications. An external resistor (R_X) and an external capacitor (C_X) control the timing and the accuracy for the circuit. Adjustment of R_X and C_X provides a wide range of output pulse widths from the Q and \overline{Q} terminals. The propagation delay from trigger input-to-output transition and the propagation delay from reset input-to-output transition are independent of R_X and C_X.


Leading-edge triggering (A) and trailing edge triggering (\overline{B}) inputs are provided for triggering from either edge of the input pulse. An unused "A" input should be tied to GND and an unused \overline{B} should be tied to V_{CC}. On power up the IC is reset. Unused resets and sections must be terminated. In normal operation the circuit retriggers on the application of each new trigger pulse. To operate in the non-triggerable mode \overline{Q} is connected to \overline{B} when leading edge triggering (A) is used or Q is connected to A when trailing edge triggering (\overline{B}) is used. The period (τ) can be calculated from τ = (0.7) R_X, C_X; R_{MIN} is 5k Ω . C_{MIN} is 0pF.

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE
CD54HC4538F3A	-55 to 125	16 Ld CERDIP
CD54HCT4538F3A	-55 to 125	16 Ld CERDIP
CD74HC4538E	-55 to 125	16 Ld PDIP
CD74HC4538M	-55 to 125	16 Ld SOIC
CD74HC4538MT	-55 to 125	16 Ld SOIC
CD74HC4538M96	-55 to 125	16 Ld SOIC
CD74HC4538NSR	-55 to 125	16 Ld SOP
CD74HC4538PW	-55 to 125	16 Ld TSSOP
CD74HC4538PWR	-55 to 125	16 Ld TSSOP
CD74HC4538PWT	-55 to 125	16 Ld TSSOP
CD74HCT4538E	-55 to 125	16 Ld PDIP
CD74HCT4538M	-55 to 125	16 Ld SOIC
CD74HCT4538MT	-55 to 125	16 Ld SOIC
CD74HCT4538M96	-55 to 125	16 Ld SOIC

NOTE: When ordering, use the entire part number. The suffixes 96 and R denote tape and reel. The suffix T denotes a small-quantity reel of 250.

Functional Diagram

TRUTH TABLE

	INPUTS	OUTPUTS			
R	Α	B	Q	Q	
L	Х	Х	L	Н	
Х	Н	Х	L	Н	
Х	Х	L	L	Н	
Н	L	↓	7	Т	
Н	1	Н	7	7	

 $\label{eq:hamiltonian} \begin{array}{l} \mbox{H = High Level, $L = Low Level, \uparrow = Transition from Low to High,} \\ \mbox{\downarrow = Transition from High to Low,} & \mbox{\square} \mbox{\square} & \mbox{One High Level Pulse,} \end{array}$

☐ One Low Level Pulse, X = Irrelevant.

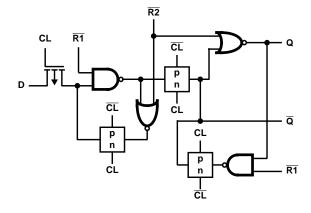


FIGURE 1. FF DETAIL

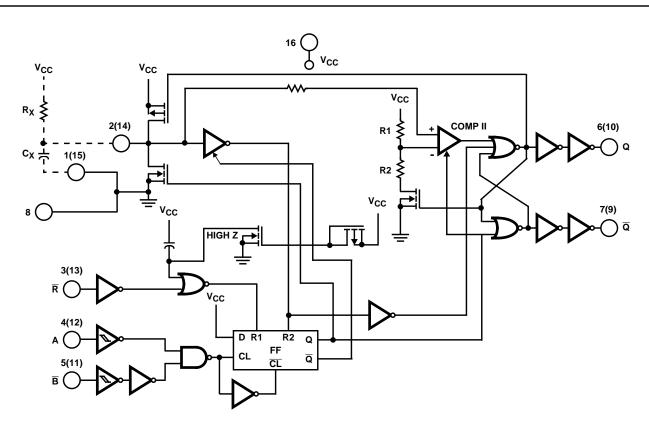


FIGURE 2. LOGIC DIAGRAM (1 MONO)

FUNCTIONAL TERMINAL CONNECTIONS

		TO NUMBER	I -	TO NUMBER	INPUT P	ULSE TO NUMBER	OTHER CONNECTIONS		
FUNCTION	MONO ₁	MONO ₂	MONO ₁	MONO ₂	MONO ₁	MONO ₂	MONO ₁	MONO ₂	
Leading-Edge Trigger/Retriggerable	3, 5	11, 13			4	12			
Leading-Edge Trigger/Non-Retriggerable	3	13			4	12	5-7	11-9	
Trailing-Edge Trigger/Retriggerable	3	13	4	12	5	11			
Trailing-Edge Trigger/Non-Retriggerable	3	13			5	11	4-6	12-10	

NOTES:

- 1. A retriggerable one-shot multivibrator has an output pulse width which is extended one full time period (T) after application of the last trigger pulse.
- 2. A non-triggerable one-shot multivibrator has a time period (T) referenced from the application of the first trigger pulse.

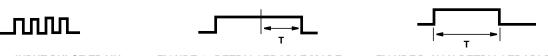


FIGURE 3. INPUT PULSE TRAIN

FIGURE 4. RETRIGGERABLE MODE PULSE WIDTH (A MODE) FIGURE 5. NON-RETRIGGERABLE MODE PULSE WIDTH (A MODE)

$\label{eq:absolute Maximum Ratings} \begin{tabular}{ll} Absolute Maximum Ratings \\ DC Supply Voltage, V_{CC} -0.5V to 7V \\ DC Input Diode Current, I_{IK} For $V_I < -0.5V$ or $V_I > V_{CC} + 0.5V$ <math>\pm 20\text{mA}$ \\ DC Output Diode Current, I_{OK} For $V_O < -0.5V$ or $V_O > V_{CC} + 0.5V$ <math>\pm 20\text{mA}$ \\ DC Output Source or Sink Current per Output Pin, I_O ... } \end{tabular}$

Operating Conditions

Temperature Range, T _A
Supply Voltage Range, V _{CC} (Note 3)
HC Types2V to 6V
HCT Types
DC Input or Output Voltage, V _I , V _O 0V to V _{CC}
Input Rise and Fall Times, t _r , t _f
Reset Input:
2V
4.5V 500ns (Max)
6V
Trigger Inputs A or B:
2V Unlimited (Max)
4.5VUnlimited (Max)
6V Unlimited (Max)
External Timing Resistor, R_X (Note 4)
External Timing Capacitor, C_X (Note 4) 0 (Min)

Thermal Information

Package Thermal Impedance, θ _{JA} (see Note 5):
E (PDIP) Package67°C/W
M (SOIC) Package73°C/W
NS (SOP) Package
PW (TSSOP) Package 108 ^o C/W
Maximum Junction Temperature
Maximum Storage Temperature Range65°C to 150°C
Maximum Lead Temperature (Soldering 10s)300°C
(SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

- 3. Unless otherwise specified, all voltages are referenced to ground.
- 4. The maximum allowable values of R_X and C_X are a function of leakage of capacitor C_X, the leakage of the 'HC4538, and leakage due to board layout and surface resistance. Values of R_X and C_X should be chosen so that the maximum current into pin 2 or pin 14 is 30mA. Susceptibility to externally induced noise signals may occur for R_X > 1MΩ.
- 5. The package thermal impedance is calculated in accordance with JESD 51-7.

DC Electrical Specifications

			TEST CONDITIONS		25°C			-40°C TO 85°C		-55°C TO 125°C		
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES								-	-		-	
High Level Input	V _{IH}	-	-	2	1.5	-	-	1.5	-	1.5	-	V
Voltage				4.5	3.15	-	-	3.15	-	3.15	-	V
				6	4.2	-	-	4.2	-	4.2	-	V
Low Level Input	V _{IL}	-	-	2	-	-	0.5	-	0.5	-	0.5	V
Voltage				4.5	-	-	1.35	-	1.35	-	1.35	V
				6	-	-	1.8	-	1.8	-	1.8	V
High Level Output	V _{OH}	V_{IH} or V_{IL}	-0.02	2	1.9	-	-	1.9	-	1.9	-	V
Voltage CMOS Loads			-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
OWIGO Edads			-0.02	6	5.9	-	-	5.9	-	5.9	-	V
High Level Output	1		-	-	-	-	-	-	-	-	-	V
Voltage TTL Loads			-4	4.5	3.98	-	-	3.84	-	3.7	-	V
			-5.2	6	5.48	-	-	5.34	-	5.2	-	V

DC Electrical Specifications (Continued)

		CONDI		v _{cc}		25°C		-40°C 1	го 85°С	-55°C T	O 125°C	4
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
Low Level Output	V _{OL}	V _{IH} or V _{IL}	0.02	2	-	-	0.1	-	0.1	-	0.1	V
Voltage CMOS Loads			0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
CIVIOS LOAUS			0.02	6	-	-	0.1	-	0.1	-	0.1	V
Low Level Output	1		-	-	-	-	-	-	-	-	-	V
Voltage			4	4.5	-	-	0.26	-	0.33	-	0.4	V
TTL Loads			5.2	6	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current A, B, R	lı	V _{CC} or GND	-	6	-	-	±0.1	-	±1	-	±1	μА
Input Leakage Current R _X C _X (Note 6)			-	6	-	-	±0.05	-	±0.5	-	±0.5	μА
Quiescent Device Current	Icc	V _{CC} or GND	0	6	-	-	8	-	80	-	160	μА
Active Device Current Q = High & Pins 2, 14 at V _{CC} /4	Icc	V _{CC} or GND	0	6	-	-	0.6	-	0.8	-	1	mA
HCT TYPES												
High Level Input Voltage	V _{IH}	-	-	4.5 to 5.5	2	-	-	2	-	2	-	V
Low Level Input Voltage	V _{IL}	-	-	4.5 to 5.5	-	-	0.8	-	0.8	-	0.8	V
High Level Output Voltage CMOS Loads	V _{ОН}	V _{IH} or V _{IL}	-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
High Level Output Voltage TTL Loads			-4	4.5	3.98	-	-	3.84	-	3.7	-	٧
Low Level Output Voltage CMOS Loads	V _{OL}	V _{IH} or V _{IL}	0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
Low Level Output Voltage TTL Loads			4	4.5	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	lı	V _{CC} and GND	-	5.5	-		±0.1	-	±1	-	±1	μА
Input Leakage Current R _X C _X (Note 6)			-	5.5	-	-	±0.05	-	±0.5	-	±0.5	μА
Quiescent Device Current	Icc	V _{CC} or GND	0	5.5	-	-	8	-	80	-	160	μА
Active Device Current Q = High & Pins 2, 14 at V _{CC} /4	I _{CC}	V _{CC} or GND	0	5.5	-	-	0.6	-	0.8	-	1	mA
Additional Quiescent Device Current Per Input Pin: 1 Unit Load	ΔI _{CC} (Note 7)	V _{CC} -2.1	-	4.5 to 5.5	-	100	360	-	450	-	490	μА

- 6. When testing I_{IL} the Q output must be high. If Q is low (device not triggered) the pull-up P device will be ON and the low resistance path from V_{DD} to the test pin will cause a current far exceeding the specification.
- 7. For dual-supply systems theoretical worst case ($V_I = 2.4V$, $V_{CC} = 5.5V$) specification is 1.8mA.

HCT Input Loading Table

INPUT	UNIT LOADS
All	0.5

NOTE: Unit Load is ΔI_{CC} limit specified in DC Electrical Table, e.g. 360µA max at 25°C.

Prerequisite for Switching Specifications

				25°C		-40	°C TO 8	5°C	-55 ⁰	C TO 12	5°C	
PARAMETER	SYMBOL	V _{CC} (V)	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
HC TYPES					-			-	-			-
Input Pulse Widths	t _{WH} , t _{WL}											
A, B		2	80	-	-	100	-	-	120	-	-	ns
		4.5	16	-	-	20	-	-	24	-	-	ns
		6	14	-	-	17	-	-	20	-	-	ns
R	t _{WL}	2	80	-	-	100	-	-	120	-	-	ns
		4.5	16	-	-	20	-	-	24	-	-	ns
		6	14	-	-	17	-	-	20	-	-	ns
Reset Recovery Time	t _{REC}	2	5	-	-	5	-	-	5	-	-	ns
		4.5	5	-	-	5	-	-	5	-	-	ns
		6	5	-	-	5	-	-	5	-	-	ns
Retrigger Time (Figure 11)	t _{rT}	5	-	175	-	-	-	-	-	-	-	ns
HCT TYPES												
Input Pulse Widths A, \overline{B}	t _{WH} , t _{WL}	4.5	16	-	-	20	-	-	24	-	-	ns
R	t _{WL}	4.5	20	-	-	25	-	-	30	-	-	ns
Reset Recovery Time	t _{REC}	4.5	5	-	-	5	-	-	5	-	-	ns
Retrigger Time (Figure 11)	t _{rT}	5	-	175	-	-	-	-	-	-	-	ns

Switching Specifications $\text{C}_L = 50 \text{pF}, \text{ Input } t_f, \, t_f = 6 \text{ns}, \, R_X = 10 \text{K}\Omega, \, C_X = 0$

		TEST			25°C		-40 ⁰ (С ТО °С		C TO 5°C	
PARAMETER	SYMBOL	CONDITIONS	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	МАХ	UNITS
HC TYPES											
Propagation Delay	t _{PLH}	C _L = 50pF									
A, \overline{B} to Q			2	-	-	250	-	315	-	375	ns
			4.5	i	-	50	-	63	-	75	ns
		C _L = 15pF	5	-	21	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	43	-	54	-	64	ns
A, \overline{B} to \overline{Q}	t _{PHL}	C _L = 50pF	2	-	-	250	-	315	-	375	ns
			4.5	-	-	50	-	63	-	75	ns
		C _L = 15pF	5	-	21	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	43	-	54	-	64	ns
R to Q	t _{PHL}	C _L = 50pF	2	-	-	250	-	315	-	375	ns
			4.5	-	-	50	-	63	-	75	ns
		C _L = 15pF	5	-	21	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	43	-	54	-	64	ns
$\overline{\mathbb{R}}$ to $\overline{\mathbb{Q}}$	t _{PLH}	C _L = 50pF	2	-	-	250	-	315	-	375	ns
K to Q			4.5	-	-	50	-	63	-	75	ns
		C _L = 15pF	5	-	21	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	43	-	54	-	64	ns
Output Transition Time	t _{TLH} , t _{THL}	C _L = 50pF	2	-	-	75	-	95	-	110	ns
			4.5	-	-	15	-	19	-	22	ns
			6	-	-	13	-	16	-	19	ns
Output Pulse Width	τ	C _L = 50pF	3	0.64	-	0.78	0.612	0.812	0.605	0.819	ms
$R_X = 10k, C_X = 0.1\mu F$			5	0.63	-	0.77	0.602	0.798	0.595	0.805	ms
Output Pulse Width Match, Same Package	-	-		-	±1	-	-	-	-	-	%
Power Dissipation Capacitance (Notes 8, 9)	C _{PD}	C _L = 15pF	5	-	136	-	-	-	-	-	pF
Input Capacitance	C _I	C _L = 50pF	-	10	-	10	-	10	-	10	pF
HCT TYPES									•		
Propagation Delay	t _{PLH}										
A, \overline{B} to Q		C _L = 50pF	4.5	-	-	55	-	69	-	83	ns
		C _L = 15pF	5	-	23	-	-	-	-	-	ns
A, \overline{B} to \overline{Q}	t _{PHL}	C _L = 50pF	4.5	-	-	55	-	69	-	83	ns
		C _L = 15pF	5	-	23	-	-	-	-	-	ns

Switching Specifications $C_L = 50 pF$, Input t_r , $t_f = 6 ns$, $R_X = 10 K\Omega$, $C_X = 0$ (Continued)

		TEST			25°C			-40°C TO 85°C		-55°C TO 125°C	
PARAMETER	SYMBOL	CONDITIONS	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
R to Q	t _{PHL}	C _L = 50pF	4.5	-	-	40	-	50	-	60	ns
		C _L = 15pF	5	-	17	-	-	-	-	-	ns
\overline{R} to \overline{Q}	t _{PLH}	C _L = 50pF	4.5	-	-	50	-	63	-	75	ns
		C _L = 15pF	5	-	21	-	-	-	-	-	ns
Output Transition Time	t _{TLH} , t _{THL}	C _L = 50pF	4.5	-	-	15	-	19	-	22	ns
Output Pulse Width $R_X = 10k, C_X = 0.1\mu F$	τ	C _L = 50pF	5	0.63	-	0.77	0.602	0.798	0.595	0.805	ms
Output Pulse Width Match, Same Package	-	-	-	-	±1	-	-	-	-	-	%
Power Dissipation Capacitance (Notes 8, 9)	C _{PD}	C _L = 15pF	5	-	134	-	-	-	-	-	pF
Input Capacitance	Cl	C _L = 50pF	-	10	-	10	-	10	-	10	pF

NOTES:

- 8. C_{PD} is used to determine the dynamic power consumption, per one shot.
- 9. $P_D = (C_{PD} + C_X) \ V_{CC}^2 \ f_i \ \Sigma (C_L \ V_{CC}^2 \ f_O)$ where f_i = input frequency, f_O = output frequency, C_L = output load capacitance, C_X = external capacitance V_{CC} = supply voltage assuming $f_i \ll \frac{1}{\tau}$

Test Circuits and Waveforms

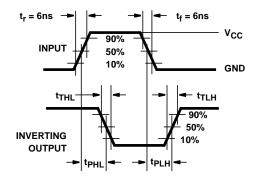


FIGURE 6. HC AND HCU TRANSITION TIMES AND PROPAGA-TION DELAY TIMES, COMBINATION LOGIC

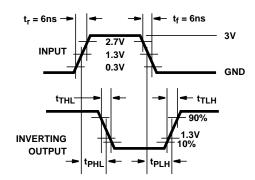


FIGURE 7. HCT TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

Typical Performance Curves

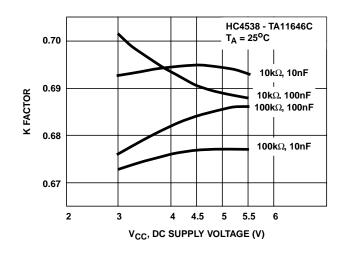


FIGURE 8. K FACTOR vs DC SUPPLY VOLTAGE (V_{CC}) - V

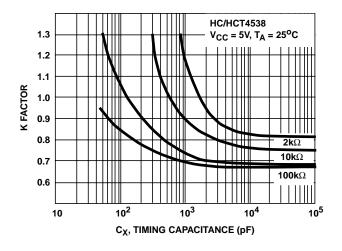


FIGURE 10. K FACTOR vs CX

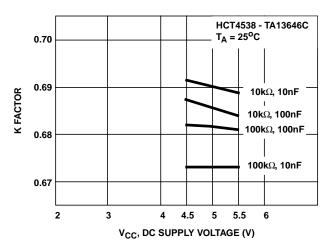


FIGURE 9. K FACTOR vs DC SUPPLY VOLTAGE (V_{CC}) - V

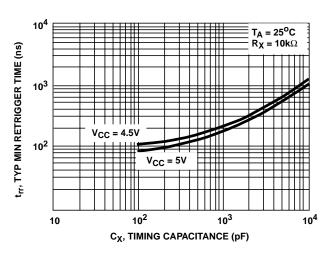
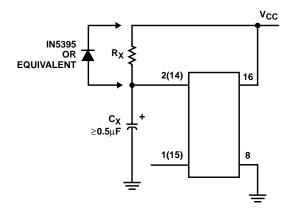



FIGURE 11. MINIMUM RETRIGGER TIME vs TIMING CAPACITANCE

Power-Down Mode

During a rapid power-down condition, as would occur with a power-supply short circuit with a poorly filtered power supply, the energy stored in C_X could discharge into Pin 2 or 14. To aviod possible device damage in this mode, when C_X is $\geq 0.5 \mu F$, a protection diode with a 1 ampere or higher rating (1N5395 or equivalent) and a separate ground return for C_X should be provided as shown in Figure 12.

An alternate protection method is shown in Figure 13, where a 51Ω current-limiting resistor is inserted in series with $C_X.$ Note that a small pulse width decrease will occur however, and R_X must be appropriately increased to obtain the originally desired pulse width.

V_{CC}

R_X

2(14)

51Ω

C_X
≥0.5μF

1(15)

8

FIGURE 12. RAPID POWER-DOWN PROTECTION CIRCUIT

FIGURE 13. ALTERNATE RAPID POWER-DOWN PROTECTION CIRCUIT

www.ti.com 14-May-2022

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-8688601EA	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8688601EA CD54HC4538F3A	Samples
CD54HC4538F	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	CD54HC4538F	Samples
CD54HC4538F3A	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8688601EA CD54HC4538F3A	Samples
CD54HCT4538F3A	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	CD54HCT4538F3A	Samples
CD74HC4538E	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD74HC4538E	Samples
CD74HC4538EE4	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD74HC4538E	Samples
CD74HC4538M	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4538M	Samples
CD74HC4538M96	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4538M	Samples
CD74HC4538M96E4	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4538M	Samples
CD74HC4538M96G4	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4538M	Samples
CD74HC4538ME4	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4538M	Samples
CD74HC4538MG4	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4538M	Samples
CD74HC4538MT	ACTIVE	SOIC	D	16	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4538M	Samples
CD74HC4538NSR	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4538M	Samples
CD74HC4538PW	ACTIVE	TSSOP	PW	16	90	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4538	Samples
CD74HC4538PWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4538	Samples
CD74HC4538PWRG4	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4538	Samples
CD74HC4538PWT	ACTIVE	TSSOP	PW	16	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4538	Samples
CD74HCT4538E	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD74HCT4538E	Samples

PACKAGE OPTION ADDENDUM

www.ti.com 14-May-2022

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
CD74HCT4538M	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4538M	Samples
CD74HCT4538M96	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4538M	Samples
CD74HCT4538MT	ACTIVE	SOIC	D	16	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4538M	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

www.ti.com 14-May-2022

OTHER QUALIFIED VERSIONS OF CD54HC4538, CD54HCT4538, CD74HC4538, CD74HCT4538:

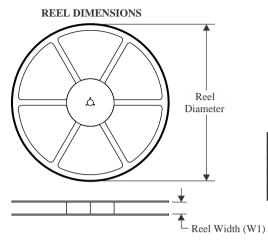
● Catalog: CD74HC4538, CD74HCT4538

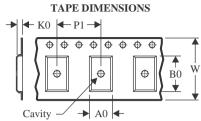
• Automotive : CD74HC4538-Q1, CD74HC4538-Q1

• Military: CD54HC4538, CD54HCT4538

NOTE: Qualified Version Definitions:

Catalog - TI's standard catalog product


• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects


• Military - QML certified for Military and Defense Applications

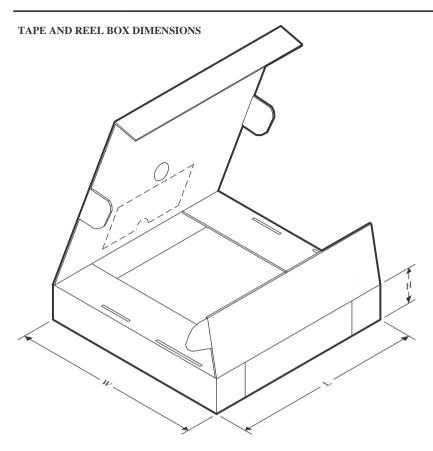
PACKAGE MATERIALS INFORMATION

www.ti.com 1-Jul-2023

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

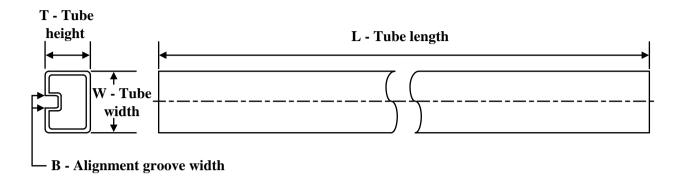
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74HC4538M96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD74HC4538NSR	so	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
CD74HC4538PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HC4538PWT	TSSOP	PW	16	250	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HCT4538M96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

www.ti.com 1-Jul-2023

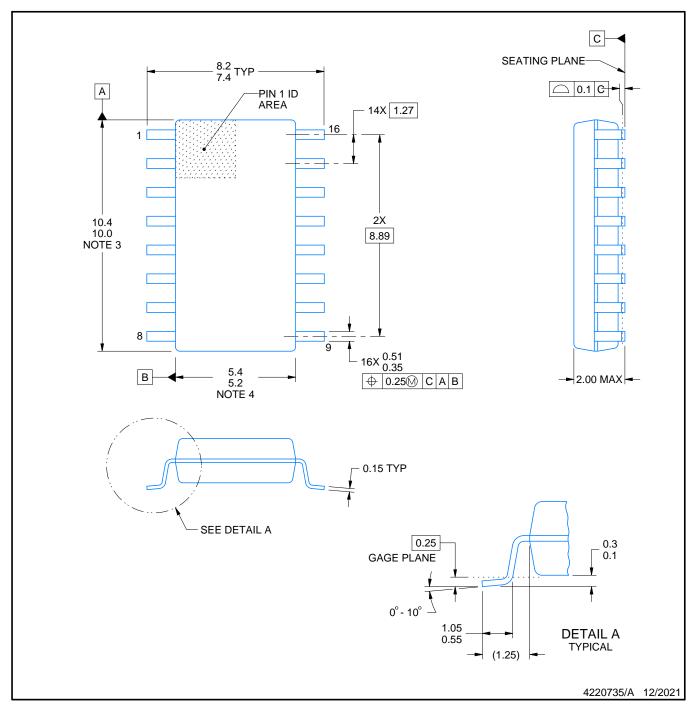


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74HC4538M96	SOIC	D	16	2500	340.5	336.1	32.0
CD74HC4538NSR	SO	NS	16	2000	356.0	356.0	35.0
CD74HC4538PWR	TSSOP	PW	16	2000	356.0	356.0	35.0
CD74HC4538PWT	TSSOP	PW	16	250	356.0	356.0	35.0
CD74HCT4538M96	SOIC	D	16	2500	340.5	336.1	32.0

www.ti.com 1-Jul-2023

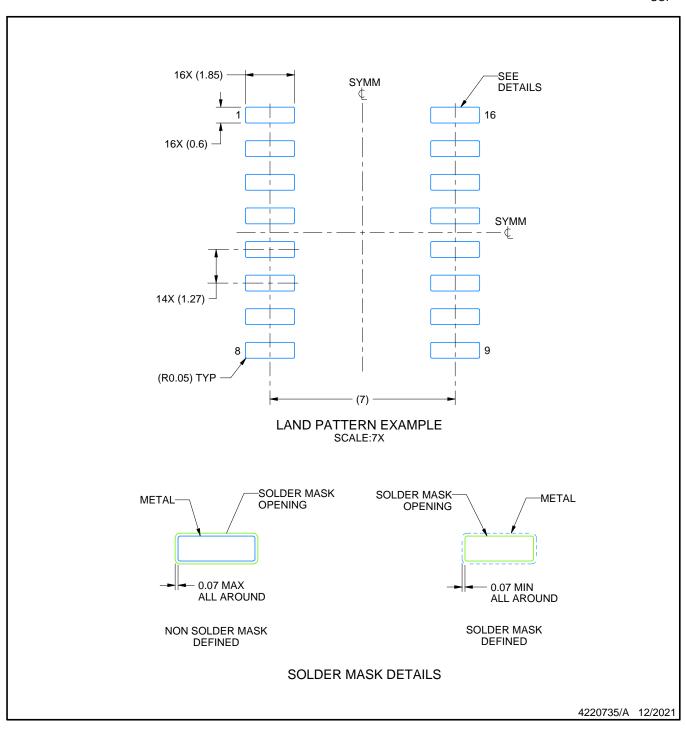
TUBE



*All dimensions are nominal

til dilliciisions are nominal				1				
Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
CD74HC4538E	N	PDIP	16	25	506	13.97	11230	4.32
CD74HC4538E	N	PDIP	16	25	506	13.97	11230	4.32
CD74HC4538EE4	N	PDIP	16	25	506	13.97	11230	4.32
CD74HC4538EE4	N	PDIP	16	25	506	13.97	11230	4.32
CD74HC4538M	D	SOIC	16	40	507	8	3940	4.32
CD74HC4538ME4	D	SOIC	16	40	507	8	3940	4.32
CD74HC4538MG4	D	SOIC	16	40	507	8	3940	4.32
CD74HC4538PW	PW	TSSOP	16	90	530	10.2	3600	3.5
CD74HCT4538E	N	PDIP	16	25	506	13.97	11230	4.32
CD74HCT4538E	N	PDIP	16	25	506	13.97	11230	4.32
CD74HCT4538M	D	SOIC	16	40	507	8	3940	4.32

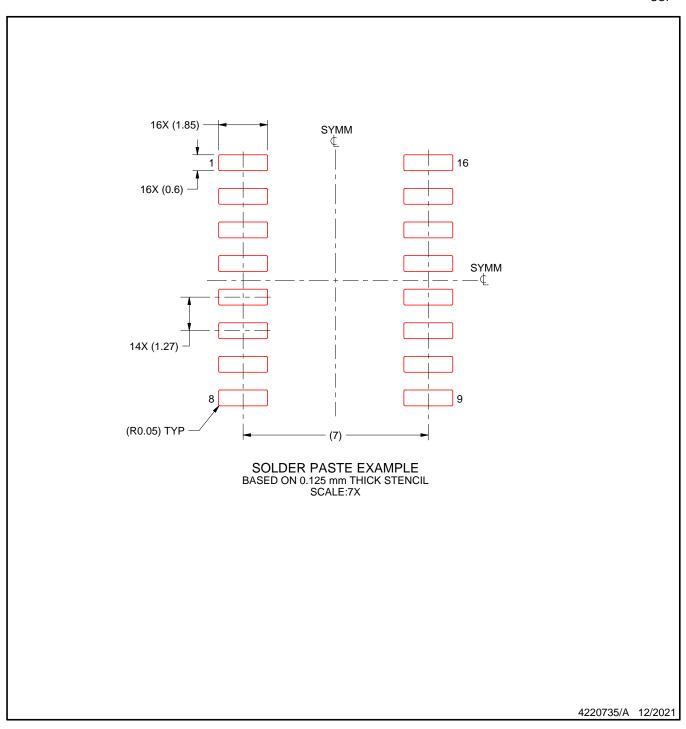
SOP


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.

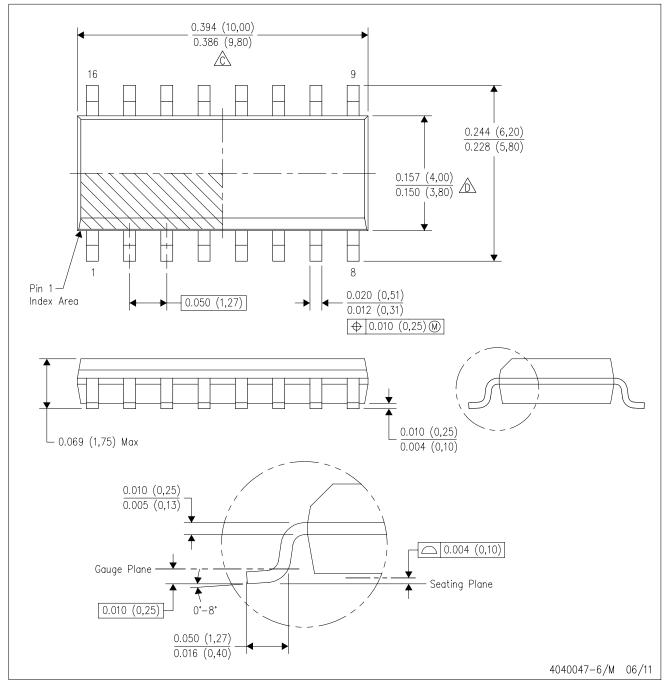
SOF



NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

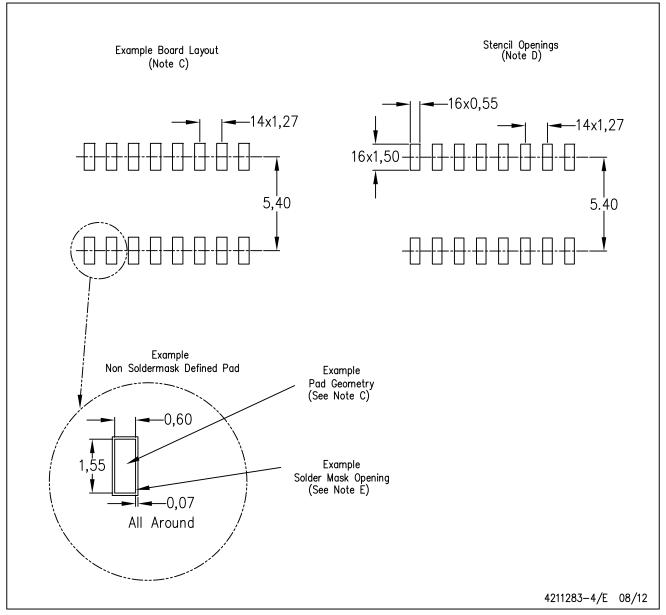
SOF


NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

D (R-PDS0-G16)

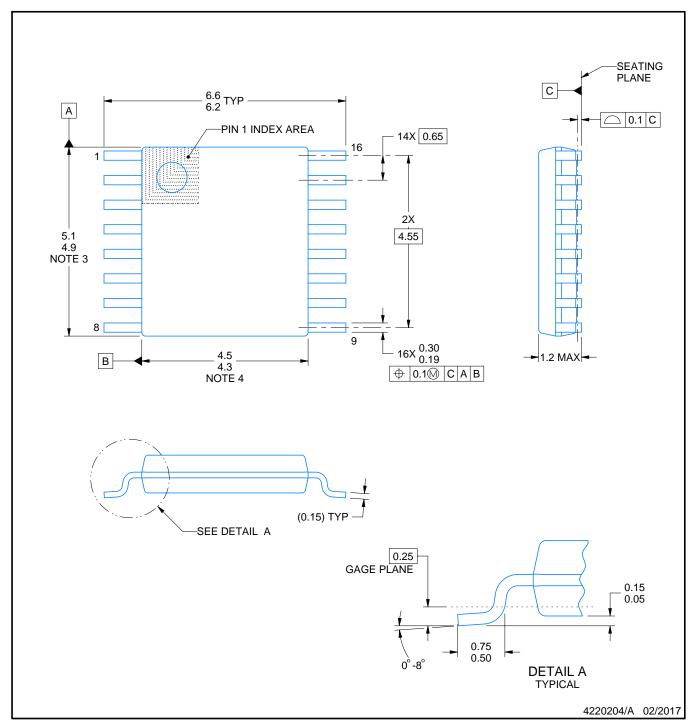
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

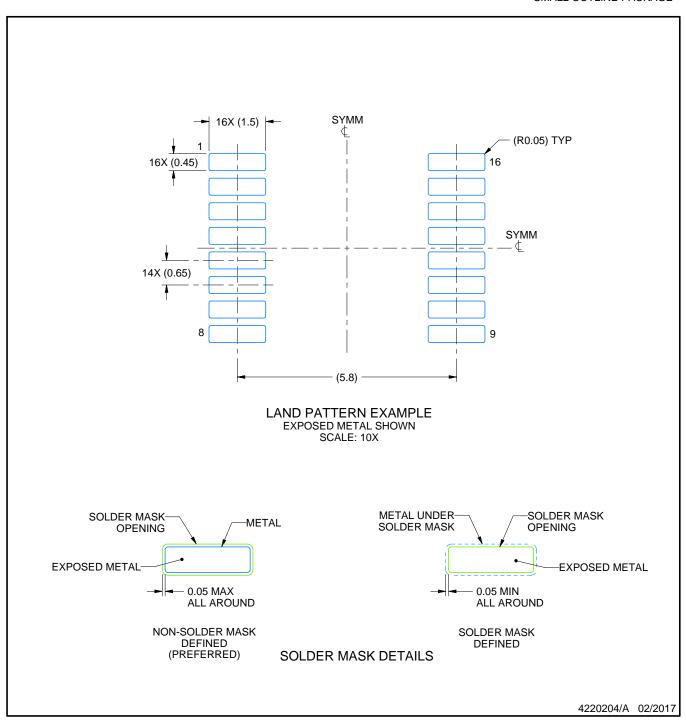
D (R-PDSO-G16)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

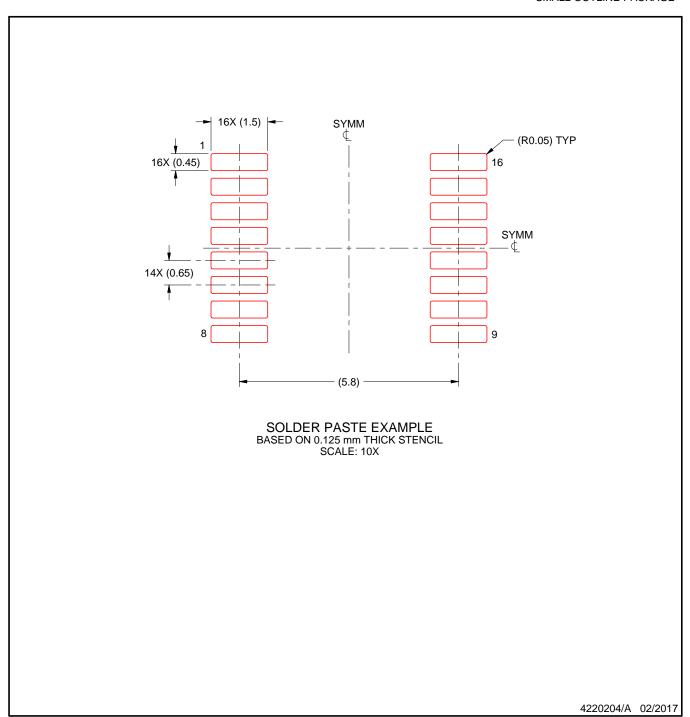
SMALL OUTLINE PACKAGE


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE


NOTES: (continued)

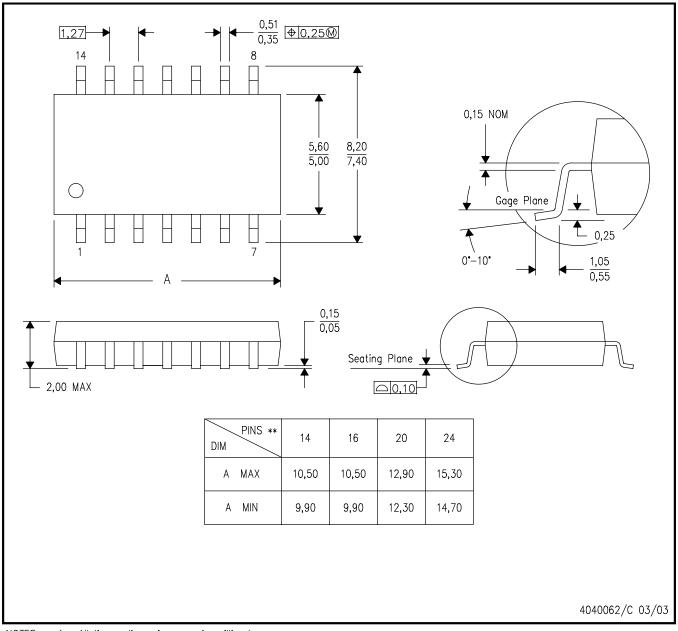
6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

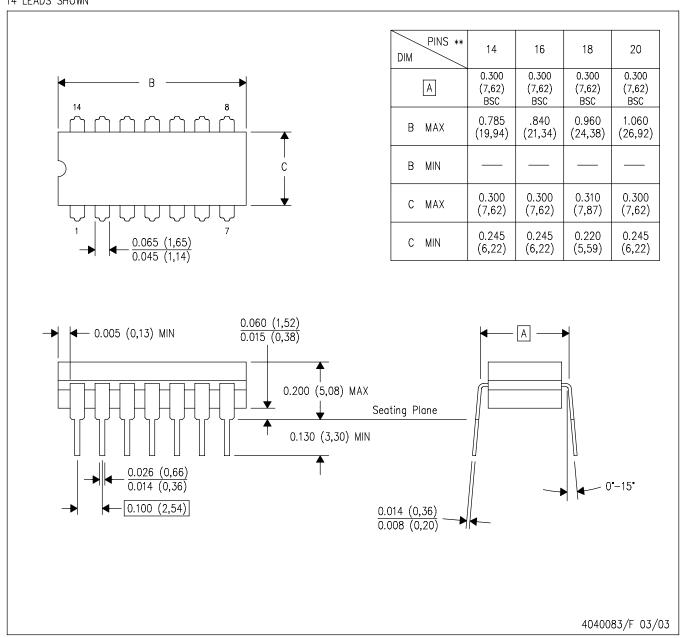
- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.



MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN


PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated