CD4011A, CD4012A, CD4023A Types

TEXAS INSTRUMENTS Data sheet acquired from Harris Semiconductor

CMOS NAND Gates

Quad 2 Input — CD4011A Dual 4 Input — CD4012A Triple 3 Input — CD4023A

The TI-CD4011A, CD4012A, and CD-4023A NAND gates provide the system designer with direct implementation of the NAND function and supplement the existing family of CMOS gates.

These types are supplied in 14-lead hermetic dual-in-line ceramic packages (D and F suffixes), 14-lead dual-in-line plastic packages (E suffix), 14-lead ceramic flat packages (K suffix), and in chip form (H suffix).

Features:

- Quiescent current specified to 15 V
- Maximum input leakage of 1 μA at 15 V (full package-temperature range)
- 1-V noise margin (full package-temperature range)

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

Characteristic	Min.	Max.	Units
Supply Voltage Range (over full package temperature range)	3	12	٧

MAXIMUM RATINGS, Absolute-Maximum Values:

STORAGE-TEMPERATURE RANGE (Tstg)
OPERATING-TEMPERATURE RANGE (TA):
PACKAGE TYPES D, F, K, H
PACKAGE TYPE E40 to +85°C
DC SUPPLY-VOLTAGE RANGE, (V _{DD})
(Voltages referenced to VSS Terminal):
POWER DISSIPATION PER PACKAGE (PD):
FOR T _A = -40 to +60°C (PACKAGE TYPE E)
FOR T _A = +60 to +85°C (PACKAGE TYPE E)Derate Linearly at 12 mW/°C to 200 mW
FOR TA = -55 to +100°C (PACKAGE TYPES D, F, K)
FOR TA = +100 to +125°C (PACKAGE TYPES D, F, K) Derate Linearly at 12 mW/°C to 200 mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR
FOR TA = FULL PACKAGE-TEMPERATURE RANGE (ALL PACKAGE TYPES)100 mW
INPUT VOLTAGE RANGE, ALL INPUTS
LEAD TEMPERATURE (DURING SOLDERING):
At distance 1/16 \pm 1/32 inch (1.59 \pm 0.79 mm) from case for 10 s max

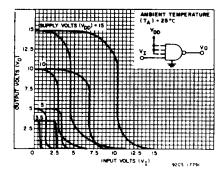


Fig. 2 — Minimum & maximum voltage transfer characteristics.

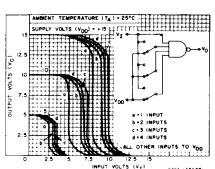


Fig. 4 — Typical multiple input switching transfer characteristics for CD4012A.

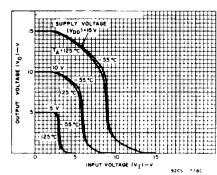


Fig. 3 — Typical voltage transfer characteristics as a function of temperature.

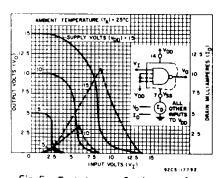
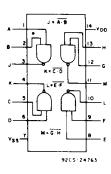
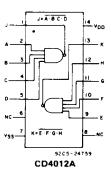




Fig. 5 — Typical current & voltage transfer characteristics.

CD4011A

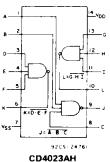
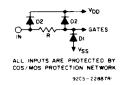



Fig. 1 - Functional diagrams.

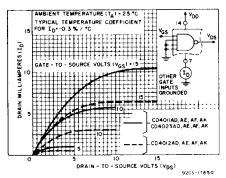


Fig. 6 - Typical n-channel drain characteristics.

CD4011A, CD4012A, CD4023A Types

STATIC ELECTRICAL CHARACTERISTICS

		nditio		Limits at Indicated Temperatures (°C)								
*	ا	narac) TES	D,F,K,H Packages			E Package				Units	
Characteristic	Vo	VIN	VDD	-55	+25		+125	-40	+25		+85	
	(V)	(V)	(V)	_55	Тур.	Limit			Тур.	Limit		
Quiescent Device			5	0.05	0.001	0.05	3	0.5	0.005	0.5	15	
Current, IL Max.		_	10	0.1	0.001	0.1	6	5	0.005	5	30	μΑ
·	_		15	2	0.02	2	40	50	0.5	50	500	
Output Voltage: Low-Level		0,5	5		0 Typ.; 0.05 Max.							
VOL		0,10	10) Typ.; (0.05 Ma	X.			V
High Level,	_	0,5	5				1.95 Mir					
Voн	_	0,10	10				9.95 Mir	1.; 10 T	yp.			
Noise Immunity: Inputs Low,	3.6	<u> </u>	5				I.5 Min.	; 2.25	Гур.			
VNL	7.2	-	10			;	3 Min.;	4.5 Typ),	V		
Inputs High,									•			
VNH	2.8	-	10			;	3 Min.;	4.5 Typ).			
Noise Margin: Inputs Low,	4.5	_	5		1 Min.							
VNML	9	-	10	1 Min.							v	
Inputs High,	0.5	_	5		1 Min.							
VNMH	1	<u> </u>	10		1 Min.							
Output Drive Current: N-Channel (Sink) IDN Min. CD4011A	0.5	_	5	0.31	0.5	0.25	0.175	0.145	0.5	0.12	0.095	
CD4023A	0.5	_	10	0.62	0.6	0.5	0.35	0.3	0.6	0.25	0.2	j
0040404	0.5	<u> </u>	5	0.15	0.25	0.12	0.085	0.072	0.25	0.06	0.05	mA
CD4012A	0.5	-	10	0.31	0.6	0.25	0.175	0.155	0.6	0.13	0.105	""
P-Channel (Source), IDP Min.	4.5	-	5	-0.31	 	-0.25 -0.6	-0.175 -0.4	-0.145 -0.35	 -	-0.12	-0.095 -0.24	
All Types	9.5		10	1-0.75	1.2	1.0.0	-0.4	-0.35	1.2	1.0.5	0.24	
Input Leakage Current, IL, IH		ny put	15		±10 ⁻⁵ Typ.; ±1 Max.						μА	

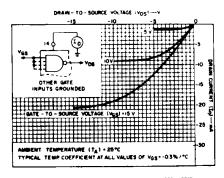


Fig. 7 — Typical p-channel drain characteristics.

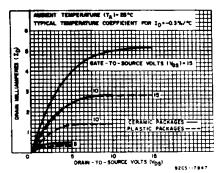


Fig. 8 — Minimum n-channel drain characteristics —CD4011A & CD4023A.

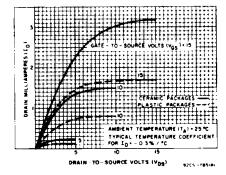


Fig. 9 — Minimum n-channel drain characteristics.

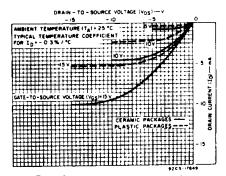


Fig. 10 — Minimum p-channel drain characteristics.

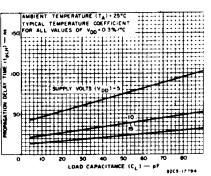


Fig. 11 — Typical low-to-high level propagation delay time vs. C_L .

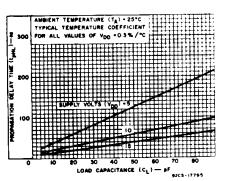


Fig. 12 -- Typical high-to-low level propagation delay time vs. C_L - CD4011A, & CD4023A.

CD4011A, CD4012A, CD4023A Types

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25°C, C_L = 15 pF, Input t_r , t_f = 20 ns, R_L = 200 K Ω

	TES	т		UNITS				
CHARACTERISTICS	CONDIT	CONDITIONS			Paci			
		V _{DD} (V)	Тур.	Max.	Тур.	Max.		
Propagation Delay Time:		5	50	75	50	100	ns	
Low-to-High Level, tpLH		10	25	40	25	50] ""	
High-to-Low Level, tPHL		5	50	75	50	100	ns	
CD4011A and CD4023A		10	25	40	25	50		
CD4012A		5	100	150	100	200	ns	
		10	50	75	50	100		
Transition Time:		5	75	100	75	125	ns	
Low-to-High Level, tTLH		10	40	60	40	75] '''	
High-to-Low Level, tTHL		5	75	125	75	150	ns	
CD4011A and CD4023A		10	50	75	50	100] ""	
CD4012A		5	250	375	250	500	ns	
		10	125	200	125	250		
Input Capacitance, C ₁	Any In	Any Input			5	_	pF	

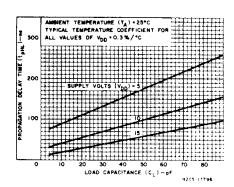


Fig. 13 — Typical high-to-low level propagation delay time vs. C_L — CD4012A.

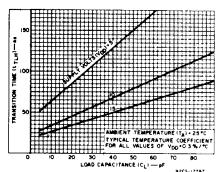


Fig. 14 — Typical low-to-high transition time vs. C_L .

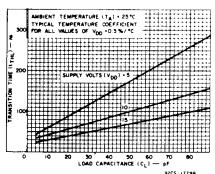


Fig. 15 — Typical high-to-low level transition time vs. C_L — CD4011A & CD4023A.

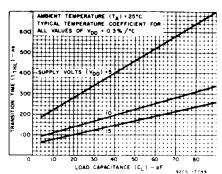


Fig. $16 - Typical high-to-low level transition time vs. <math>C_L - CD4012A$.

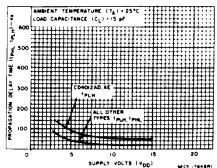


Fig. 17 — Minimum propagation delay time vs. VDD.

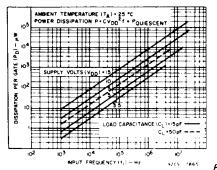


Fig. 18 — Typical dissipation characteristics.

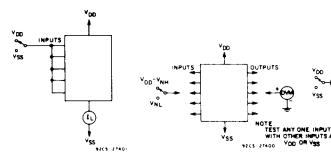


Fig. 19 — Quiescent device current test circuit.

Fig. 20 - Noise immunity test circuit.

Fig. 21 - Input leakage current test circuit.

MEASURE INPUTS
SEQUENTIALLY,
TO BOTH VOD AND VSS
CONNECT ALL UNUSED
INPUTS TO EITHER

V_{DO} OR V_{SS}

www.ti.com 28-Aug-2021

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
	(.,		Ū			(=)	(6)	(0)		(1.5)	
CD4011AD3	ACTIVE	CDIP SB	JD	14	1	Non-RoHS & Non-Green	AU	N / A for Pkg Type	-55 to 125	CD4011AD3	Samples
JM38510/05001BCA	ACTIVE	CDIP	J	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 05001BCA	Samples
M38510/05001BCA	ACTIVE	CDIP	J	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 05001BCA	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

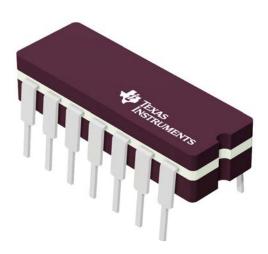
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

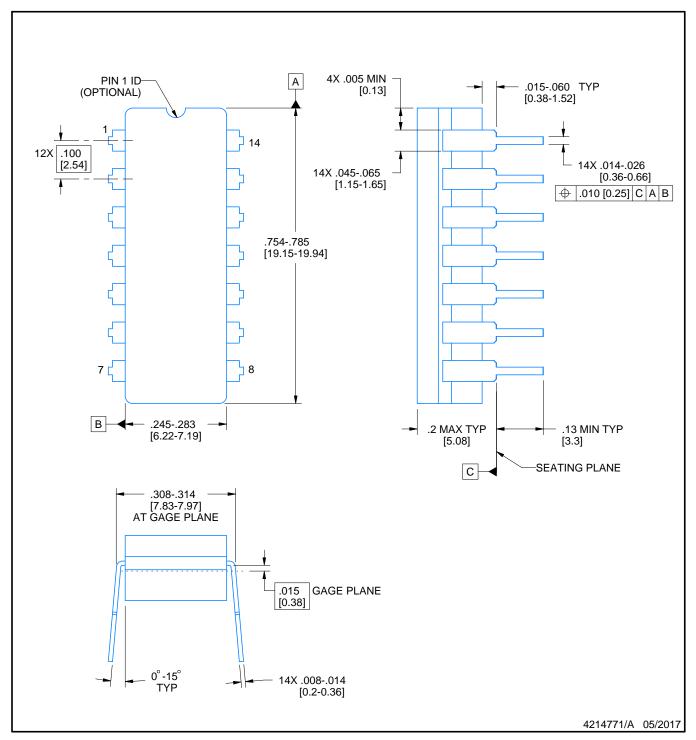


PACKAGE OPTION ADDENDUM

www.ti.com 28-Aug-2021

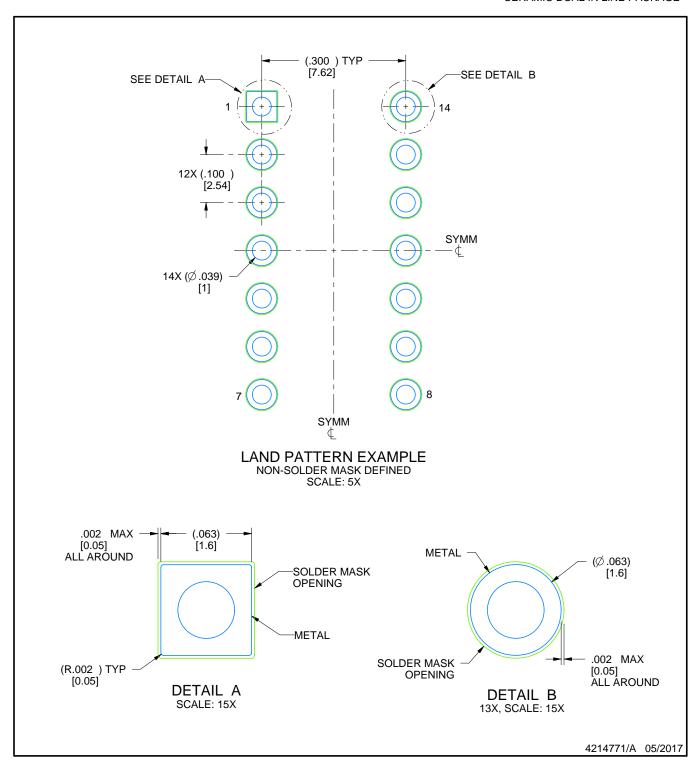
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

CERAMIC DUAL IN LINE PACKAGE


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

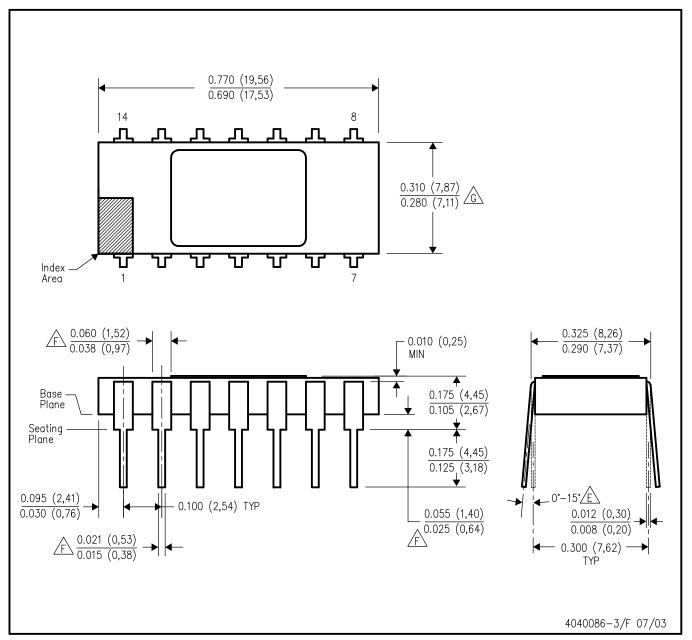
4040083-5/G

CERAMIC DUAL IN LINE PACKAGE



NOTES:

- 1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This package is hermitically sealed with a ceramic lid using glass frit.
- His package is remitted by sealed with a ceramic its using glass mit.
 Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
 Falls within MIL-STD-1835 and GDIP1-T14.



CERAMIC DUAL IN LINE PACKAGE

JD (R-CDIP-T14)

CERAMIC SIDE-BRAZE DUAL-IN-LINE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Controlling dimension: inch.
- D. Leads within 0.005 (0,13) radius of true position (TP) at gage plane with maximum material condition and unit installed.
- E Angle applies to spread leads prior to installation.
- F Outlines on which the seating plane is coincident with the plane (standoff = 0), terminals lead standoffs are not required, and lead shoulder may equal lead width along any part of the lead above the seating/base plane.
- G Body width does not include particles of packing materials.
- H. A visual index feature must be located within the cross—hatched area.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated