

AN-1756 LM3481 Evaluation Board

1 Introduction

The LM3481 is a current mode, low side N channel FET controller. It can be utilized in numerous configurations including a Boost, Flyback or SEPIC (Single Ended Primary Inductor Converter). This evaluation board demonstrates the flexibility of the LM3481 in a boost topology. The operating conditions for the evaluation board are listed below:

 $3V \le V_{IN} \le 11V$

 $V_{OUT} = 12V$

 $0A \le I_{OUT} \le 1.5A$

The circuit and bill of materials for this design are given below:

Figure 1. Circuit Diagram

All trademarks are the property of their respective owners.

1

www.ti.com

Bill of Materials

2 Bill of Materials

Table 1. Bill of Materials 300 kHz, Vin = 5V, Vo = 12V, $\rm I_{0}$ = 1.5A

Designat or	Function	Description	Part Number	Vendor
U1	Controller	LM3481 VSSOP-10	LM3481	Texas Instruments
C1	Input Filter Cap	100 µF, 20V, D case, OxiCap	TPSV107M020R0060	AVX
C2	Input Filter Cap	100 µF, 20V, D case, OxiCap	TPSV107M020R0060	AVX
C3	Decoupling Cap	.47 μF, 16V, X7R, 1206	ECJ-3VB1C474K	Panasonic
C4	Output Filter Cap	100 µF, 16V, Y case, Ta	TPSD107M016R0100	AVX
C5	Output Filter Cap	100 µF, 16V, Y case, Ta	TPSD107M016R0100	AVX
C6	Comp Cap	0.12 μF, 25V, 0805	ECJ-2YB1E124K	Panasonic
C7	Current Limit Sense Cap	2200 pF, 50V, 0805	ECJ-2VB1H222K	Panasonic
C8	Comp Cap	390 pF, 50V, 0805	08055C391KAT2A	AVX
C9	V _{cc} Cap	1 μF, 25V, 1206	12063C105KAT	AVX
C11	Analog Input By. Cap	1 μF, 10V, 0805	0805ZC105KAT	AVX
R1	Resistor Divider (Upper)	169 kΩ, 1%, 0805	CRCW0805169KFK	Vishay
R2	Resistor Divider (Lower)	20k, 1%, 0805	CRCW080520K0FK	Vishay
R3	Comp Resistor	1.37k, 1%, 0805	CRCW08051K37FK	Vishay
R4	Filter Resistor	100Ω, 1%, 0805	CRCW0805100RFK	Vishay
R5	Sense Resistor	20 mΩ, 1%	WSL2512R0200FE	Vishay
R6	Freq. Adj. Resistor	61.9 kΩ, 1%, 0805	CRCW08056192F	Vishay
R7	UVLO Res. Div.	121 kΩ, 1%, 0805	CRCW08051213F	Vishay
R8	UVLO Res. Div.	121 kΩ, 1%, 0805	CRCW08051213F	Vishay
L1	Input Filter	7.8μ , 8A, DCR = 10 mΩ	RLF12560-7R8N8R2	TDK
D1	Schottky Diode	$4A,30V, V_{f} = 0.4V$	SL-43	Vishay
Q1	FET	SO-8, Rdson = 2.9 m Ω @V _{DS} = 30V	SI4368DY	Vishay
J1	Jumper	Shunt LM with handle, 2 positions	881545-2	Tyco Electronics
VIN	VIN Post Turret	90mil mounting diameter	97H6305	Newark Catalog
GND	VIN GND Post Turret	90mil mounting diameter	97H6305	Newark Catalog
GND	VOUT Post Turret	90mil mounting diameter	97H6305	Newark Catalog
VOUT	VOUT GND Post Turret	90mil mounting diameter	97H6305	Newark Catalog

2

www.ti.com

3 Performance

Benchmark data has been taken from the evaluation board using the LM3481. Figure 2 shows an efficiency measurement taken at the maximum load of 1.5A with Vin at 5V.

Figure 2. Efficiency vs Load

The advantage of the evaluation board is the ability to examine performance tradeoffs through substitution of parts. By careful selection of the components used, it is possible to optimize the application circuit for a given parameter. For instance, the FET footprint has been designed to accommodate either one SO-8 or two parallel SO-8 packages. The selection of the FET would then be determined by the design constraints. An example would be that a lower system cost could be obtained by selection of a FET with a higher $R_{DS(ON)}$, although performance would be sacrificed through reduced efficiency.

4 Current Limit

The purpose of the R4 (R_{SL}) resistor is to provide flexibility in the selection of the slope compensation needed for the required application. The amount of slope compensation directly determines the minimum inductance required for stability. (Please see the *LM3481/LM3481Q High Efficiency Low-Side N-Channel Control for Switching Regulators* (SNVS346) data sheet for adjustment of slope compensation and for a complete discussion on how to calculate the R4 value needed). This evaluation board uses R4 and C7 to filter the Isen signal with negligible affect on the slope compensation.

5 Layout Fundamentals

Good layout for DC-DC converters can be implemented by following a few simple design guidelines:

- 1. Place the power components (catch diode, inductor, and filter capacitors) close together. Make the traces between them as short and wide as possible.
- 2. Use wide traces between the power components and for power connections to the DC-DC converter circuit.
- Connect the ground pins of the input and output filter capacitors and catch diode as close as possible using generous component-side copper fill as a pseudo-ground plane. Then, connect this to the ground plane through several vias.
- 4. Arrange the power components so that the switching loops curl in the same direction.
- 5. Separate noise sensitive traces, such as the voltage feedback path, from noisy traces associated with the power components.
- 6. Ensure a good low-impedance ground for the converter IC.
- 7. Place the supporting components for the converter IC, such as compensation and frequency selection components as close to the converter IC as possible, but away from noisy traces and the power components. Make their connections to the converter IC and its pseudo-ground plane as short as

possible.

8. Place noise sensitive circuitry such as radio or modem blocks away from the DC-DC converter.

Figure 3. Top Layer

Figure 4. Bottom Layer

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications		
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive	
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications	
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers	
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps	
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy	
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial	
Interface	interface.ti.com	Medical	www.ti.com/medical	
Logic	logic.ti.com	Security	www.ti.com/security	
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense	
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video	
RFID	www.ti-rfid.com			
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com	
Wireless Connectivity	www.ti.com/wirelessconnectivity			

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated