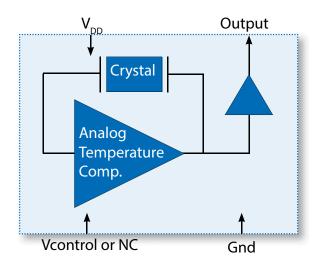


Vectron's VT-840 Temperature Compensated Crystal Oscillator (TCXO) is a quartz stabilized, clipped sine wave output, analog temperature compensated oscillator, operating off a 1.8, 2.5, 2.8, 3.0 or 3.3 volt supply in a hermetically sealed 2.5x2.0 ceramic package.


Features

- Output Frequencies to 52 MHz
- ±0.5ppm Temperature Stability
- · Fundamental Crystal Design
- Optional VCXO Function available
- · Low Power
- Hermetically Sealed Ceramic SMD package
- Product is compliant to RoHS directive and fully compatible with lead free assembly

Applications

- Wireless Communications
- GPS
- Base Stations
- · Point to point radios
- Broadband Access
- Test Equipment
- Handsets

Block Diagram

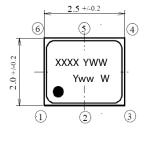

Specifications

Table 1. Electrical Performance							
Parameter	Symbol	Min.	Тур	Max	Units		
Output Frequency	f_{o}	10.000		52.000	MHz		
Supply Voltage ¹ , ordering option	V _{DD}	+1.8,	+1.8, +2.5, +2.8, +3.0, +3.3				
Supply Current, 10.000 to 26.000MHz 26.001 to 52.000MHz	I _{DD}			2.0 2.5	mA mA		
Operating Temperature, ordering option	T _{OP}	-20)/70, -30/85, -40	/85	°C		
Stability Over T _{OP} , ordering option		±0.5,	±1.0, ±1.5, ±2.0	, ±2.5	ppm		
Initial Accuracy ² , "No Adjust" Option				±1.0	ppm		
Power Supply Stability				±0.2	ppm		
Load Stability				±0.2	ppm		
Aging				±1.0	ppm/1st yr		
Pull Range, ordering option	TPR	=	ppm				
Control Voltage to reach Pull Range, 1.8V option +2.5V, +2.8V, +3.0V and +3.3 V options		0.3 0.5		1.5 2.5	V V		
Control Voltage Impedance		500			Kohm		
Output Level ³	V _o p/p	0.8			V		
Output Load			10K II 10pF				
Phase Noise, 26.000MHz 10Hz 100Hz 1kHz 10kHz 10kHz			-85 -110 -130 -148 -148		dBc/Hz		
Start Up Time				2	ms		

- 1. The VT-840 power supply pin should be filtered, eg, a 0.1 and 0.01uf capacitor
- 2. Initial Accuracy is before IR reflow, allow and additional 1ppm shift through 2 reflows and 24 hours.
- 3. The Output is DC coupled and would normally be AC coupled with a capacitor.

Outline Drawing

Recommended Pad Layout

0.04-601

Marking Information

Line 1

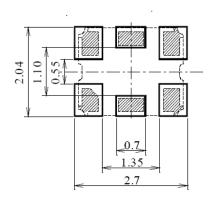
XXXX - Frequency (Example: 4500 for 45MHz)

YWW - Date Code of Crystal

Y - Year

WW - Week of the Year

Line 2


Yww - Date Code of TCXO

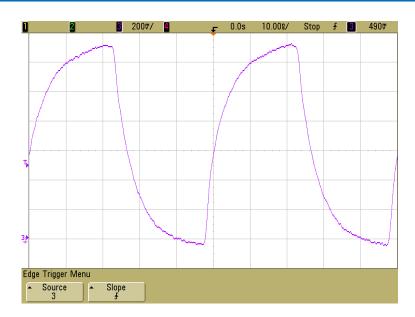
Y - Year

ww - Week of the Year

W- Manufacturing Location

• - Pin 1 Indicator

1	2	3
(6)	(S) 0.6 1.55 2.3	Bottom View 4 Dimensions in mm
		חוווו כווסוכווזווים


Table 2.	Table 2. Pinout								
Pin #	Symbol	Function							
1	V _c	TCXO Control Voltage or Ground							
2	NC	NC Make No Connection							
3	GND	Electrical and Lid Ground							
4	Fo	Output Frequency							
5	NC	Make No Connection							
6	V _{DD}	Supply Voltage							

VCXO Function

VCXO Feature: The VT-840 can be ordered with a VCXO function for applications were it will be used in a PLL, or the output frequency needs fine tune or calibration adjustments. This is a high impedance input, 500 Kohm, and can be driven with an opamp or terminated with adjustable resistors etc. **Pin 1 should not be left floating on the VCXO optional device.**

"No Adjust" Option: In applications were the VT-840 will not be used in a PLL, or the output frequency does not need fine tune adjustments, the best device to use would be a VT-840-xxx-xxx0. By using the "no adjust" option, the circuit is simplified as Vc does not need to be adjusted or set to a predetermined voltage and pin 1 should be grounded (pin 1 can be left open but should not be set to a voltage such as an RF signal or power supply voltage.

Clipped Sine Wave Output

Maximum Ratings

Absolute Maximum Ratings and Handling Precautions

Stresses in excess of the absolute maximum ratings can permanently damage the device. Functional operation is not implied or any other excess of conditions represented in the operational sections of this data sheet. Exposure to absolute maximum ratings for extended periods may adversely affect device reliability.

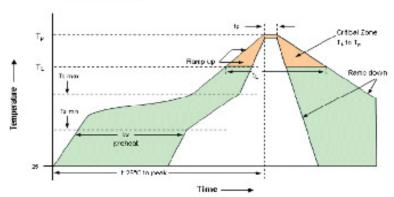
Although ESD protection circuitry has been designed into the VT-840, proper precautions should be taken when handling and mounting, VI employs a Human Body Model and Charged Device Model for ESD susceptibility testing and design evaluation.

ESD thresholds are dependent on the circuit parameters used to define the model. Although no industry standard has been adopted for

ESD thresholds are dependent on the circuit parameters used to define the model. Although no industry standard has been adopted for the CDM a standard resistance of 1.5kOhms and capacitance of 100pF is widely used and therefor can be used for comparison purposes.

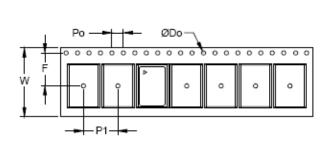
Table 3. Maximum Ratings			
Parameter	Symbol	Rating	Unit
Storage Temperature	$T_{_{STORE}}$	-55/125	°C
Supply Voltage	$V_{_{\mathrm{DD}}}$	-0.6 to 6	V
Control Voltage	V_{c}	0/V _{DD}	V
ESD, Human Body Model	НВМ	1500	V
ESD, Charged Device Model	CDM	100	V

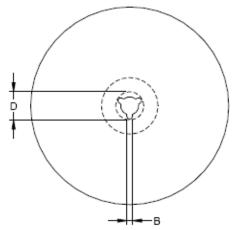
Table 4. Environmental Compliance	
Parameter	Condition
Mechanical Shock	MIL-STD-883 Method 2002
Mechanical Vibration	MIL-STD-883 Method 2007
Temperature Cycle	MIL-STD-883 Method 1010
Solderability	MIL-STD-883 Method 2003
Fine and Gross Leak	MIL-STD-883 Method 1014
Resistance to Solvents	MIL-STD-883 Method 2015
Moisture Sensitivity Level	MSL1
Contact Pads	Gold (0.5um min - 0.8um max) over Nickel

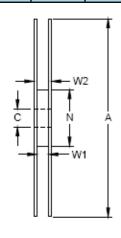

IR Compliance

Suggested IR Profile

Devices are built using lead free epoxy and can be subjected to standard lead free IR reflow conditions shown in Table 5. Contact pads are gold over nickel and lower maximum temperatures can also be used, such as 220C.

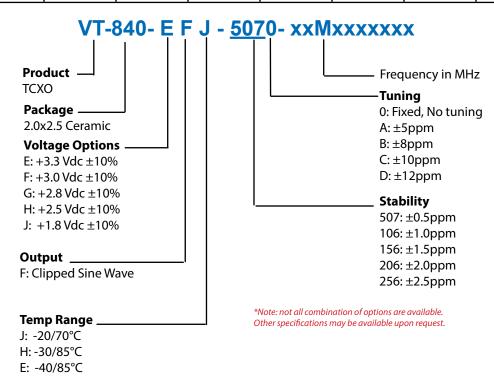

Table 5. Reflow Profile		
Parameter	Symbol	Value
PreHeat Time	ts	200 sec Max
Ramp Up	R_{UP}	3°C/sec Max
Time above 217°C	tL	150 sec Max
Time to Peak Temperature	tAMB-P	480 sec Max
Time at 260°C	tP	30 sec Max
Time at 240°C	tP2	60 sec Max
Ramp down	$R_{_{DN}}$	6°C/sec Max


Solderprofile:



Tape & Reel

Table 6. Tape and Reel Information												
Tape Dimensions (mm)					Reel Dimensions (mm)							
W	F	Do	Ро	P1	А	В	С	D	N	W1	W2	#/Reel
8.0	3.5	1.5	4.0	4.0	180	2.0	13	21.0	60.0	9.0	11.4	



Ordering Information

Table 7. Sta	Table 7. Standard Frequencies (MHz)								
10.000	10.240	12.000	12.8000	14.000	14.400	16.000	16.369	16.384	16.800
19.200	20.000	24.000	25.000	25.6000	26.000	30.000	31.250	32.000	38.400
39.000	40.000	42.000	44.000	45.000	48.000	50.000	52.000		

Example: VT-840-EFJ-5070-26M0000000

* Add **_SNPBDIP** for tin lead solder dip Example: VT-840-EFJ-5070-26M0000000_SNPBDIP

Revision History

Revision Date	Approved	Description				
May 17, 2013	VN	Removed 4-pad package option and retained only the 6-pad ppackage option.				
Oct 29, 2013	VN	pdaetd Asia contact information				
Feb 11, 2014	VN	Updated Vectron Logo and Hudson address				
Sep 17, 2015	VN	Added Product Marking Information				
Jan 17, 2017	RC	Update IR Compliance				
Aug 10, 2018	FB	Update logo and contact information, add "SNPBDIP" ordering option				

Microsemi Headquarters

One Enterprise, Aliso Viejo, CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
email: sales.support@microsemi.com
www.microsemi.com

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs, power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or a opplications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any performance specifications or hereunder is provided by as in a size of the products. Buyer shall not rely on any data and performance specifications or hereunder is provided by whice and verify the same. The information provided by Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licensee, or any other IP rights, whether with regard to such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information is entirely of any products and services at any time without notice.

©2018 Microsemi, a wholly owned subsidiary of Microchip Technology Inc. All rights reserved. Microsemi and the Microsemi logo are registered trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.