# 1 GHz to 60 GHz, Reflective, Silicon SP4T Switch 

## FEATURES

- Ultrawideband frequency range: 1 GHz to 60 GHz
- Low insertion loss
- 2.2 dB typical up to 40 GHz
- 2.8 dB typical up to 55 GHz
- 3.2 dB typical up to 60 GHz
- High isolation
- 33 dB typical up to 40 GHz
- 28 dB typical up to 55 GHz
- 28 dB typical up to 60 GHz
- High input linearity
- P0.1dB: 25 dBm typical
- IP3: 47 dBm typical
- High RF power handling
- Through path: 24 dBm
- Hot switching path: 24 dBm
- CMOS-ILVTTL-compatible
- No low frequency spur
- Fast RF switching time: 25 ns
- RF settling time ( $50 \% \mathrm{~V}_{\text {CTRL }}$ to 0.1 dB of $\mathrm{RF}_{\text {OUT }}$ ): 35 ns
- Single-supply operation capability (VDD $=3.3 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}$ )
- 24-terminal, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$, RoHS-compliant, LGA package


## APPLICATIONS

- Industrial scanners
- Test instrumentation
- Cellular infrastructure-mmWave 5G
- Military radios, radars, and electronic counter measures (ECMs)
- Microwave radios and very small aperture terminals (VSATs)

FUNCTIONAL BLOCK DIAGRAM


Figure 1. Functional Block Diagram

## GENERAL DESCRIPTION

The ADRF5054 is a reflective, SP4T switch manufactured in a silicon process. The ADRF5054 operates from 1 GHz to 60 GHz . The switch has a low insertion loss of 2.2 dB and 3.2 dB with 33 dB and 28 dB isolation at 40 GHz and 60 GHz , respectively. The ADRF5054 has an RF input power handling capability of 24 dBm for the through and hot switching paths. The ADRF5054 requires dual-supply voltages of $\pm 3.3 \mathrm{~V}$. The ADRF5054 employs complementary metal-oxide semiconductor (CMOS)- and low voltage transistor logic (LVTTL)-compatible control.

The ADRF5054 can also operate with a single positive supply voltage ( $V_{D D}$ ) applied while the negative supply voltage $\left(V_{S S}\right)$ is tied to ground. In this operating condition, the small signal performance is maintained while the switching characteristics, linearity, and power handling performance are derated (see Table 2 for more details).

The ADRF5054 comes in a 24 -terminal, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$, RoHS compliant, land grid array (LGA) package and can operate from $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.

## TABLE OF CONTENTS

Features................................................................. 1
Applications .......................................................... 1
Functional Block Diagram...................................... 1
General Description............................................... 1
Specifications........................................................ 3
Single-Supply Operation.................................... 4
Absolute Maximum Ratings................................... 5
Thermal Resistance........................................... 5
Power Derating Curve........................................ 5
Electrostatic Discharge (ESD) Ratings............... 5
ESD Caution....................................................... 5
Pin Configuration and Function Descriptions........ 6

Interface Schematics........................................... 6
Typical Performance Characteristics..................... 7
Insertion Loss, Return Loss, and Isolation......... 7
Input Power Compression and Third-Order Intercept............................................................ 9
Theory of Operation............................................. 10
RF Input and Output......................................... 10
Power Supply................................................... 10
Applications Information...................................... 11
Recommendations for PCB Design.................. 11
Outline Dimensions............................................. 13
Ordering Guide................................................. 13

## REVISION HISTORY

## 5/2023—Revision 0: Initial Version

## SPECIFICATIONS

$V_{D D}=3.3 \mathrm{~V}, \mathrm{~V}_{S S}=-3.3 \mathrm{~V}, \mathrm{~V} 1=0 \mathrm{~V}$ or $\mathrm{V}_{D D}, \mathrm{~V} 2=0 \mathrm{~V}$ or $\mathrm{V}_{D D}, T_{C A S E}=25^{\circ} \mathrm{C}$ for a $50 \Omega$ system, unless otherwise noted. $R F x$ refers to $R F 1$ to RF4, and $\mathrm{V}_{\text {CTRL }}$ is voltages of the digital inputs, V 1 and V 2 .

Table 1. Electrical Characteristics

| Parameter | Symbol | Test Conditions/Comments | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FREQUENCY RANGE | f |  | 1 |  | 60 | GHz |
| INSERTION LOSS <br> Between RFC and RFx (On) |  | 1 GHz to 18 GHz 18 GHz to 40 GHz 40 GHz to 55 GHz 55 GHz to 60 GHz |  | $\begin{aligned} & 1.7 \\ & 2.2 \\ & 2.8 \\ & 3.2 \\ & \hline \end{aligned}$ |  | $\begin{array}{\|l} \mathrm{dB} \\ \mathrm{~dB} \\ \mathrm{~dB} \\ \mathrm{~dB} \\ \hline \end{array}$ |
| RETURN LOSS RFC <br> RF1 to RF4 (On) |  | 1 GHz to 18 GHz 18 GHz to 40 GHz 40 GHz to 55 GHz 55 GHz to 60 GHz 1 GHz to 18 GHz 18 GHz to 40 GHz 40 GHz to 55 GHz 55 GHz to 60 GHz |  | $\begin{aligned} & 19 \\ & 20 \\ & 22 \\ & 18 \\ & 23 \\ & 15 \\ & 22 \\ & 20 \end{aligned}$ |  | $\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$ $\mathrm{dB}$ |
| ISOLATION <br> Between RFC and RF1 (Off) or RFC and RF4 (Off) <br> Between RFC and RF2 (Off) or RFC and RF3 (Off) <br> Between RF1 and RF4 (Selected) and RF2 and RF3 (Off) <br> Between RF2 and RF3 (Selected) and RF1 and RF4 (Off) |  | 1 GHz to 18 GHz 18 GHz to 40 GHz 40 GHz to 55 GHz 55 GHz to 60 GHz 1 GHz to 18 GHz 18 GHz to 40 GHz 40 GHz to 55 GHz 55 GHz to 60 GHz 1 GHz to 18 GHz 18 GHz to 40 GHz 40 GHz to 55 GHz 55 GHz to 60 GHz 1 GHz to 18 GHz 18 GHz to 40 GHz 40 GHz to 55 GHz 55 GHz to 60 GHz |  | 42 37 28 28 41 33 31 32 43 36 33 36 45 36 37 33 |  | $\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$ $\mathrm{dB}$ $\mathrm{dB}$ |
| SWITCHING CHARACTERISTICS <br> Rise Time and Fall Time <br> On Time and Off Time <br> RF Settling Time <br> 0.1 dB | $\mathrm{t}_{\text {RISE }}, \mathrm{t}_{\text {fALL }}$ <br> $\mathrm{t}_{\mathrm{ON}}, \mathrm{t}_{\mathrm{OFF}}$ | $10 \%$ to $90 \%$ of RF output (RF Out ) $50 \% \mathrm{~V}_{\text {CTRL }}$ to $90 \%$ of $\mathrm{RF}_{\text {OUT }}$ $50 \% \mathrm{~V}_{\text {CTRL }}$ to 0.1 dB of final $\mathrm{RF}_{\text {OUT }}$ |  | $\begin{aligned} & 5 \\ & 25 \\ & 35 \end{aligned}$ |  | ns ns ns |
| INPUT LINEARITY ${ }^{1}$ <br> 0.1 dB Power Compression Third-Order Intercept | $\begin{aligned} & \text { P0.1dB } \\ & \text { IP3 } \end{aligned}$ | 1 GHz to 60 GHz <br> Two-tone input power $=12 \mathrm{dBm}$ each tone, $\Delta \mathrm{f}=1 \mathrm{MHz}$ |  | $\begin{aligned} & 25 \\ & 47 \end{aligned}$ |  | $\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \end{aligned}$ |
| SUPPLY CURRENT <br> Positive Supply Current Negative Supply Current | $\left\lvert\, \begin{aligned} & \mathrm{IDD} \\ & \mathrm{I}_{\mathrm{SS}} \end{aligned}\right.$ | VDD and VSS pins |  | $\begin{aligned} & 145 \\ & 510 \end{aligned}$ |  | $\mu \mathrm{A}$ <br> $\mu \mathrm{A}$ |

## SPECIFICATIONS

Table 1. Electrical Characteristics (Continued)

${ }^{1}$ For input linearity performance over frequency, see Figure 20 to Figure 23.
${ }^{2}$ For power derating over frequency, see Figure 2.
$3^{3}$ For $105^{\circ} \mathrm{C}$ operation, the power handling degrades from the $\mathrm{T}_{\text {CASE }}=85^{\circ} \mathrm{C}$ specification by 3 dB .

## SINGLE-SUPPLY OPERATION

$V_{D D}=3.3 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V} 1=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}, \mathrm{V} 2=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}$, and $\mathrm{T}_{\mathrm{CASE}}=25^{\circ} \mathrm{C}$ for a $50 \Omega$ system, unless otherwise noted.

## Table 2. Single-Supply Operation Specifications

| Parameter | Symbol | Test Conditions/Comments | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FREQUENCY RANGE | f |  | 1 |  | 60 | GHz |
| SWITCHING CHARACTERISTICS <br> Rise Time and Fall Time On Time and Off Time 0.1 dB RF Settling Time | $t_{\text {RISE }}, t_{\text {FALL }}$ <br> ton, toff | $10 \%$ to $90 \%$ of RF $_{\text {OUT }}$ <br> $50 \% \mathrm{~V}_{\text {CTRL }}$ to $90 \%$ of $\mathrm{RF}_{\text {OUT }}$ <br> $50 \% V_{\text {CTRL }}$ to 0.1 dB of final $\mathrm{RF}_{\text {OUT }}$ |  | $\begin{aligned} & 20 \\ & 58 \\ & 62 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$ |
| INPUT LINEARITY <br> 0.1 dB Power Compression Input Third-Order Intercept | $\begin{aligned} & \mathrm{P} 0.1 \mathrm{~dB} \\ & \mathrm{IIP} 3 \end{aligned}$ | $\begin{aligned} & \mathrm{f}=1 \mathrm{GHz} \text { to } 60 \mathrm{GHz} \\ & \text { Two-tone input power }=0 \mathrm{dBm} \text { each tone, } \Delta \mathrm{f}=1 \\ & \mathrm{MHz} \end{aligned}$ |  | $\begin{aligned} & 13 \\ & 41 \end{aligned}$ |  | $\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \end{aligned}$ |
| RECOMMENDED OPERATING CONDITONS <br> RF Input Power ${ }^{1}$ <br> Through Path <br> Hot Switching | $\mathrm{P}_{\text {IN }}$ | $\mathrm{f}=3 \mathrm{GHz} \text { to } 60 \mathrm{GHz}, \mathrm{~T}_{\text {CASE }}=85^{\circ} \mathrm{C}$ <br> RF signal is applied to the RFC or through connected RFx <br> RF signal is applied to the RFC while switching between RFx |  |  | 13 13 | $\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \end{aligned}$ |

${ }^{1}$ For $105^{\circ} \mathrm{C}$ operation, the power handling degrades from the $\mathrm{T}_{\text {CASE }}=85^{\circ} \mathrm{C}$ specification by 1 dB .

## ABSOLUTE MAXIMUM RATINGS

For the recommended operating conditions, see Table 1.
Table 3. Absolute Maximum Ratings

| Parameter | Rating |
| :--- | :--- |
| $\mathrm{V}_{\mathrm{DD}}$ | $-0.3 \mathrm{~V} \mathrm{to}+3.6 \mathrm{~V}$ |
| $\mathrm{~V}_{S S}$ | -3.6 V to +0.3 V |
| Digital Control Input Voltage ${ }^{1}$ |  |
| $\quad$ Voltage | -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ |
| $\quad$ Current | 3 mA |
| RF Input Power ${ }^{2}\left(\mathrm{f}=3 \mathrm{GHz}\right.$ to $\left.60 \mathrm{GHz}, \mathrm{T}_{\text {CASE }}=85^{\circ} \mathrm{C}^{3}\right)$ |  |
| Through Path | 25 dBm |
| $\quad$ Hot Switching | 25 dBm |
| RF Input Power, Single Supply $\left(\mathrm{V}_{D D}=3.3 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{f}\right.$ |  |
| $=3 \mathrm{GHz}$ to $\left.60 \mathrm{GHz}, \mathrm{T}_{\mathrm{CASE}}=85^{\circ} \mathrm{C}^{3}\right)$ |  |
| Through Path | 14 dBm |
| Hot Switching (RFC) | 14 dBm |
| RF Input Power, Unbiased $\left(\mathrm{V}_{\mathrm{DD}}\right.$ and $\left.\mathrm{V}_{S S}=0 \mathrm{~V}\right)$ | 14 dBm |
| Temperature |  |
| $\quad$ Junction, $\mathrm{T}_{\mathrm{J}}$ | $135^{\circ} \mathrm{C}$ |
| Storage Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Reflow | $260^{\circ} \mathrm{C}$ |

${ }^{1}$ Overvoltages at digital control inputs are clamped by internal diodes. Current must be limited to the maximum rating given.
2 For power derating over frequency, see Figure 2.
${ }^{3}$ For $105^{\circ} \mathrm{C}$ operation, the power handling degrades from the $\mathrm{T}_{\text {CASE }}=85^{\circ} \mathrm{C}$ specification by 3 dB for the dual supply and 1 dB for the single supply.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.
Only one absolute maximum rating can be applied at any one time.

## THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.
$\theta_{\mathrm{Jc}}$ is the junction to case bottom (channel to package bottom) thermal resistance.

Table 4. Thermal Resistance

| Package Type | $\theta_{\mathrm{Jc}}{ }^{1}$ | Unit |
| :--- | :--- | :--- |
| $\mathrm{CC}-24-19$, Through Path | 345 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| 1 | $\theta_{\mathrm{Jc}}$ was determined by simulation under the following conditions: the heat |  |
| transfer is due solely to the thermal conduction from the channel through the |  |  |
| ground pad to the PCB, and the ground pad is held constant at the operating |  |  |
| temperature of $85^{\circ} \mathrm{C}$. |  |  |

[^0]
## POWER DERATING CURVE



Figure 2. Power Derating vs. Frequency, Low Frequency Detail, $T_{\text {CASE }}=85^{\circ} \mathrm{C}$

## ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.
Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.
Charged device model (CDM) per ANSI/ESDAJJEDEC JS-002.

## ESD Ratings for the ADRF5054

Table 5. ADRF5054, 24-Terminal LGA

| ESD Model | Withstand Threshold (V) |
| :--- | :--- |
| HBM | $\pm 1000$ for RFx pins |
|  | $\pm 2000$ for supply and digital control pins |
| $\pm 500$ for all pins |  |

## ESD CAUTION



ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD.
Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



NOTES

1. EXPOSED PAD. THE EXPOSED PAD MUST BE CONNECTED
TO THE RF AND DC GROUND OF THE PCB.

Figure 3. Pin Configuration (Top View)

Table 6. Pin Function Descriptions

| Pin No. | Mnemonic | Description |
| :---: | :---: | :---: |
| 1 | V1 | Control Input 1. See Figure 6 for the interface schematic. |
| 2, 3, 5, 6, 9, 11 to 13,15 to 17, 19 to 21,23 | GND | Ground. The GND pins must be connected to the RF and DC ground of the PCB. |
| 4 | RFC | RF Common Port. The RFC pin is DC-coupled to O V. No DC blocking capacitor is required when the RF line potential is equal to 0 VDC . See Figure 4 for the interface schematic. |
| 7 | VSS | Negative Supply Voltage. See Figure 7 for the interface schematic. |
| 8 | VDD | Positive Supply Voltage. See Figure 5 for the interface schematic. |
| 10 | RF4 | RF Throw Port 4. The RF4 pin is DC-coupled to 0 V . No DC blocking capacitor is required when the RF line potential is equal to 0 VDC . See Figure 4 for the interface schematic. |
| 14 | RF3 | RF Throw Port 3. The RF3 pin is DC-coupled to 0 V . No DC blocking capacitor is required when the $R F$ line potential is equal to 0 VDC . See Figure 4 for the interface schematic. |
| 18 | RF2 | RF Throw Port 2. The RF2 pin is DC-coupled to 0 V . No DC blocking capacitor is required when the RF line potential is equal to 0 VDC . See Figure 4 for the interface schematic. |
| 22 | RF1 | RF Throw Port 1. The RF1 pin is DC-coupled to 0 V . No DC blocking capacitor is required when the $R F$ line potential is equal to 0 VDC . See Figure 4 for the interface schematic. |
| 24 | V2 | Control Input 2. See Figure 6 for the interface schematic. |
|  | EPAD | Exposed Pad. The exposed pad must be connected to the RF and DC ground of the PCB. |

## INTERFACE SCHEMATICS



Figure 4. RFx Pins Interface Schematic


Figure 5. VDD Interface Schematic


Figure 6. V1, V2 Pin Interface Schematic

## TYPICAL PERFORMANCE CHARACTERISTICS

## INSERTION LOSS, RETURN LOSS, AND ISOLATION

$V_{D D}=3.3 \mathrm{~V}, \mathrm{~V}_{S S}=-3.3 \mathrm{~V}, \mathrm{~V} 1=0 \mathrm{~V}$ or $\mathrm{V}_{D D}, \mathrm{~V} 2=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}$, and $\mathrm{T}_{\text {CASE }}=25^{\circ} \mathrm{C}$ for a $50 \Omega$ system, unless otherwise noted. RFx refers to RF 1 to RF4.


Figure 8. Insertion Loss vs. Frequency for RFx


Figure 9. Return Loss for RFC when RFx Selected vs. Frequency


Figure 10. RFC to RF2, RF3, and RF4 Isolation vs. Frequency, RF1 Selected


Figure 11. Insertion Loss for RF2 Selected vs. Frequency over Temperature


Figure 12. Return Loss for RFx Selected vs. Frequency


Figure 13. RFC to RFx Isolation vs. Frequency, RF1 Selected

TYPICAL PERFORMANCE CHARACTERISTICS


Figure 14. RFC to RFx Isolation vs. Frequency, RF2 Selected


Figure 15. RFC to RFx Isolation vs. Frequency, RF3 Selected


Figure 16. RFC to RFx Isolation vs. Frequency, RF4 Selected


Figure 17. RF2 to RFx Isolation vs. Frequency, RF2 Selected


Figure 18. RF3 to RFx Isolation vs. Frequency, RF3 Selected


Figure 19. RF4 to RFx Isolation vs. Frequency, RF4 Selected

## TYPICAL PERFORMANCE CHARACTERISTICS

## INPUT POWER COMPRESSION AND THIRD-ORDER INTERCEPT

$V_{D D}=3.3 \mathrm{~V}, \mathrm{~V}_{S S}=-3.3 \mathrm{~V}, \mathrm{~V} 1=0 \mathrm{~V}$ or $\mathrm{V}_{D D}, \mathrm{~V} 2=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}$, and $\mathrm{T}_{\mathrm{CASE}}=25^{\circ} \mathrm{C}$ for a $50 \Omega$ system, unless otherwise noted. RFx refers to RF 1 to RF4.


Figure 20. Input P0.1dB vs. Frequency over Temperature


Figure 21. Input IP3 vs. Frequency over Temperature


Figure 22. Input P0.1dB vs. Frequency (Low Frequency Detail) over Temperature


Figure 23. Input IP3 vs. Frequency (Low Frequency Detail) over Temperature

## THEORY OF OPERATION

The ADRF5054 can interface CMOS-ILVTTL-compatible logic directly. The V1 and V2 pins determine which RF port is in the insertion loss state and in the isolation state. See Table 7 for the control voltage truth table.

## RF INPUT AND OUTPUT

The RF ports (RFC, RF1 to RF4) are DC-coupled to 0 V , and no $D C$ blocking is required at the RF ports when the RF line potential is equal to 0 V . The RF ports are internally matched to $50 \Omega$.
The ADRF5054 is bidirectional with equal power handling capabilities. The RF input signal can be applied to the RFC port or the selected RF throw port.
The insertion loss path conducts the RF signal between the selected RF throw port and the RF common port. The isolation paths provide high loss between the insertion loss path and the unselected RF throw ports. The unselected RF ports of the ADRF5054 are reflective.

The power handling of the ADRF5054 derates with frequencies less than 3 GHz . See Figure 2 for the derating of the RF power toward the lower frequencies.

## POWER SUPPLY

The ADRF5054 requires a positive supply voltage applied to the VDD pin, and a negative supply voltage applied to the VSS pin.

Bypassing capacitors are recommended on the supply lines to minimize RF coupling.
The ideal power-up sequence is as follows:

1. Connect GND.
2. Power up VDD and VSS. Power up VSS after VDD to avoid current transients on VDD during ramp-up.
3. Apply digital control inputs. The relative order of the control inputs is not important. However, powering the digital control inputs before the VDD supply can inadvertently forward bias and damage the internal ESD protection structures. To avoid this damage, use a series $1 \mathrm{k} \Omega$ resistor to limit the current flowing into the control pin. Use pull-up or pull-down resistors if the controller is in a high impedance state after VDD is powered up and the control pins are not driven to a valid logic state.
4. Apply the RF input signal.

The ideal power-down sequence is the reverse order of the powerup sequence.

Table 7. Control Voltage Truth Table

| Digital Control Inputs |  |  |  |  |  |  |  | RFx Paths |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V1 | V2 | RFC to RF1 | RFC to RF2 | RFC to RF3 | RFC to RF4 |  |  |  |  |  |  |  |  |
| Low | Low | Insertion loss (on) | Isolation (off) | Isolation (off) | Isolation (off) |  |  |  |  |  |  |  |  |
| High | Low | Isolation (off) | Insertion loss (on) | Isolation (off) | Isolation (off) |  |  |  |  |  |  |  |  |
| Low | High | Isolation (off) | Isolation (off) | Insertion loss (on) | Isolation (off) |  |  |  |  |  |  |  |  |
| High | High | Isolation (off) | Isolation (off) | Isolation (off) | Insertion loss (on) |  |  |  |  |  |  |  |  |

## APPLICATIONS INFORMATION

The ADRF5054 has two power supply pins (VDD and VSS) and two control pins (V1 and V2). Figure 24 shows the external components and connections for the supply pins. The VDD and VSS pins are decoupled with a 100 pF multilayer ceramic capacitor. The device pinout allows the placement of the decoupling capacitors close to the device. No other external components are needed for bias and operation, except DC blocking capacitors on the RF pins when the $R F$ lines are biased at a voltage different than 0 V . See the Pin Configuration and Function Descriptions section for additional information.


Figure 24. Recommended Schematic

## RECOMMENDATIONS FOR PCB DESIGN

The RF ports are matched to $50 \Omega$ internally and the pinout is designed to mate a coplanar waveguide (CPWG) with $50 \Omega$ characteristic impedance on the PCB. Figure 25 shows the referenced CPWG RF trace design for an RF substrate with 8 mil thick Rogers RO4003C dielectric material. The RF trace with a 16 mil width and a 13 mil clearance is recommended for 1.7 mil finished copper thickness.


Figure 25. Example PCB Stackup
Figure 26 shows the routing of the RF traces, supply, and control signals from the device. The ground planes are connected with densely filled through vias for optimal RF and thermal performance. The primary thermal path for the device is the bottom side.


Figure 26. PCB Layout
Figure 27 and Figure 28 show the recommended layout from the device RFx pins to the $50 \Omega$ CPWG on the referenced stackup. PCB pads are drawn 1:1 to device pads. The ground pads are drawn solder mask defined, and the signal pads are drawn as pad defined. The paste mask is designed to match the device pads without any aperture reduction. The paste mask is divided into multiple openings for the paddle.


Figure 27. Recommended RFC, RF1 and RF4 Pin Transition

## APPLICATIONS INFORMATION



Figure 28. Recommended RF2 and RF3 Pin Transition
For alternate PCB stackups with different dielectric thickness and RF trace design, contact Analog Devices, Inc., Technical Support Request for further recommendations.

## OUTLINE DIMENSIONS



Figure 29. 24-Terminal Land Grid Array [LGA]
(CC-24-19)
Dimensions shown in millimeters

## ORDERING GUIDE

| Model $^{1}$ | Temperature Range | Package Description | Package Option | Marking Code |
| :--- | :--- | :--- | :--- | :--- |
| ADR5054BCCZN | $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ | $24-$ Terminal Land Grid Array [LGA] | CC-24-19 | 5054 |
| ADRF5054BCCZN-R7 | $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ | $24-$ Terminal Land Grid Array [LGA] | CC-24-19 | 5054 |

$1 \mathrm{Z}=$ RoHS-Compliant Part.


[^0]:    ${ }^{1} \theta_{\mathrm{Jc}}$ was determined by simulation under the following conditions: the heat transfer is due solely to the thermal conduction from the channel through the temperature of $85^{\circ} \mathrm{C}$.

